• Title/Summary/Keyword: Basic Material Property

Search Result 205, Processing Time 0.03 seconds

A Study of Long Term Recording Reserved Type Material by Using Glass Micro-structure (유리의 미세구조를 이용한 장기보존형 기록재료에 관한 연구)

  • Lee, Kang-Taek;Yoon, Duk-Ki;Chin, Hyun-Ju;Choi, Kwang-Hoon;Lee, Kyu-Ho;Kim, Hyun-Gyu;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.777-781
    • /
    • 2006
  • Recently, there are a lot of study to alternate polycarbonate which is being used as storage material in CD, DVD. In this study, we alternated polycarbonate with glass. We observed the change of shape in a surface of the glass which was focused by Nd:YAG Laser. The change of shape and property was studied by thermal mechanical analysis (TMA), UV-Vis spectrometer, AFM and SEM. According to Laser power and quantity of additives, the Bump's size and shape are showed differently. In high energy, the Bump will be transformed into Pit. And also according to CTE, $T_d$ and absorption ratio of glass, difference between Bump and Pit is confirmed. From these investigation, we could control that the minimum size of bump which is more useful shape than pit's is about 1.3 $\mu$m, H 70 nm, and it is near same the spot size.

Preparation of Rayon Filament based Woven Fabric and PCM Treatment for Developing Cool Touch Summer Clothing Material (여름철 냉감성 의류소재 개발을 위한 비스코스 레이온 중심의 직물 제조 및 PCM 가공)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.326-332
    • /
    • 2014
  • To develop cool touch feeling fabrics for summer clothing material, it was manufactured several compositions of woven fabrics, having rayon multi-filament yarn (non-twisted) as warp and various kinds of yarn, such as viscose rayon multi-filament yarn (twisted), tencel$^{(R)}$ spun yarn, PET high absorbance quick dry filament yarn, and PET based rayon-like yarn, as weft. After preparing the fabrics, basic properties of the fabrics were investigated, such as air-permeability, tensile strength, absorption rate, drying rate, etc. Also, surface warm / cool sensations of the woven fabrics were assessed by Qmax Warm / Cool Touch Tester. It was observed that the fabrics composed of viscose rayon multi-filament yarn (warp) and PET high absorbance quick dry filament yarn (weft) showed excellent surface cool touch sensation-the highest Qmax value. This is because the fabric having flat shaped PET high absorbance quick dry filament shows the largest contact area with Qmax measuring plate. And, the fabric also showed superior high absorbance and quick dry property as expected. In addition, we treated phase change material (PCM) on the surface of the fabric composed of viscose rayon multi-filament yarn (warp) and PET high absorbance quick dry filament yarn(weft) to improve the cool touch feeling. However, the surface cool touch feeling was impaired by resin treated with PCM during the finishing process.

Material Properties and Compressibility Using Heckel and Kawakita Equation with Commonly Used Pharmaceutical Excipients

  • Choi, Du-Hyung;Kim, Nam-Ah;Chu, Kyung-Rok;Jung, Youn-Jung;Yoon, Jeong-Hyun;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.237-244
    • /
    • 2010
  • This study investigated basic material properties and compressibility of commonly used pharmaceutical excipients. Five classes of excipients are selected including starch, lactose, calcium phosphate, microcrystalline cellulose (MCC), and povidone. The compressibility was evaluated using compression parameters derived from Heckel and Kawakita equation. The Heckel plot for lactose and dicalcium phosphate showed almost linear relationship. However, for MCC and povidone, curves in the initial phase of compression were observed followed by linear regions. The initial curve was considered as particle rearrangement and fragmentation and then plastic deformation at the later stages of the compression cycle. The Kawakita equation showed MCC exhibited higher compressibility, followed by povidone, lactose, and calcium phosphate. MCC undergoes significant plastic deformation during compression bringing an extremely large surface area into close contact and facilitating hydrogen bond formation between the plastically deformed, adjacent cellulose particles. Lactose compacts are consolidated by both plastic deformation and fragmentation, but to a larger extent by fragmentation. Calcium phosphate has poor binding properties because of its brittle nature. When formulating tablets, selection of suitable pharmaceutical excipients is very important and they need to have good compression properties with decent powder flowability. Material properties tested in this study might give a good guide how to select excipients for tablet formulations and help the formulation scientists design the optimum ones.

Complex Compliance of Rough Rice Kernel under Cyclic Loading (주기적(週期的) 반복하중(反復荷重)을 받는 벼의 복소(複素)컴프라이언스)

  • Kim, M.S.;La, W.J.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.79-90
    • /
    • 1992
  • Viscoelastic characteristics of agricultural products may be determined through three basic tests ; stress relaxation, creep, and dynamic test. Considering the changeability of living materials, dynamic test in which information is derived in a relatively short time appears to be highly desirable, in which either cyclic stress or cyclic strain is imposed and the remaining quantity (strain or stress) is measured. The periodically varying stress will also result in periodically varying strain which in a viscoelastic material should theoretically be out of phase with the stress, because part of the energy subjected to sample is stored in the material as potential energy and part is dissipated as heat. This behavior results in a complex frequency-dependent compliance denoted by J($i{\omega}$). The complex compliance and therefore the storage compliance, the loss compliance, the phase angle, and percent energy loss for the sample should be obtainable with a given static viscoelastic property of the material under static load. The complex compliance of the rough rice kernel were computed from the Burger's model describing creep behavior of the material which were obtained in the previous study. Also, the effects of cyclic load and moisture content of grain on the dynamic viscoelastic behavior of the samples were analyized. The results obtained from this study were summarized as follows ; 1. The storage compliance of the rough rice kernel slightly decreased with the frequency applied but at above the frequency of 0.1 Hz it was nearly constant with the frequency, and the loss compliance of the sample very rapidly decreased with increase in the frequency on those frequency ranges. 2. It was shown that the storage compliance and the loss compliance of the sample increased with increase in grain moisture content. Effect of grain moisture content on the storage compliance of the sample was highly significant than effect of the frequency applied, but effect of the frequency on the loss compliance of the sample was more significant than effect of grain moisture content. 3. In low moisture content, the percent energy loss of Japonica-type rough rice was much higher than that of Indica-type rough rice, but, in high moisture content, vice versa.

  • PDF

Mechanical Characteristics of Municipal Waste Incineration Bottom Ashes (생활폐기물 소각 바닥재의 역학적 특성)

  • Oh, Myounghak;Lee, Jeonghyeop;Park, Haeyong;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.21-27
    • /
    • 2015
  • Due to the population growth and development of industry, waste from household and industries has increased. As the advanced countries experienced these problems, they have already started research on recycling methods of waste incineration ashes. Domestic recycling rate of incineration ash became up to 80 percent as high as the level of developed countries, but the recycling was limited to fly ash for admixture in concrete. In case of bottom ash, most of bottom ash was reclaimed in the landfills. Therefore, basic physical property and mechanical experiments for bottom ash were conducted in this study to evaluate the possibility of incineration bottom ash as an alternative construction materials. Bottom ashes from three different landfills with two different incineration methods were tested. Incineration methods are Stoker type Incinerator and Pyrolysis-Melting Treatment. Bottom ash can be used as an alternative granular material for construction based on the basic physical property and mechanical characteristics similar to those of sandy materials. However, the incineration method should be considered since it can affect the material and mechanical characteristics of the incineration bottom ash.

Experimental Study for the Development of the Mixing Ratio as a Compaction Pile (다짐말뚝 재료로서 쇄석과 저회의 적정 혼합비 도출을 위한 실험적 연구)

  • Leem, Hansoo;Kim, Sunkon;Lee, Jooho;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.5-16
    • /
    • 2012
  • In the case of using the soil materials created by cutting in-situ ground directly without adjusting particle size, it is recommendable to seek the compaction property or material constant required for filling design or density control through indoor test, and many studies on this subject have been carried out during that time. The researches conducted during that time, however, were focused on the mixed materials with different diameters that exist in a natural condition. There has been no study conducted using coal fly ash that is by-product of the thermal power plant that is actively considered as the building materials. Therefore, this study was aimed at implementing compaction test and examining the basic engineering property in order to explore the influence of crushing the particles through compacting the admixture of crushed stone and coal fly ash produced from thermal power plant on its engineering property, and then the impact of the admixture volume of each material on compaction property and material property by conducting the One-Dimensional Compression Test. As result of compaction test, the optimum moisture ratio of coal fly ash was shown to be approx. 23%. As result of compaction test in accordance with the mixed ratio of coal fly ash and crushed stone under the same compaction energy and moisture ratio, dry unit weight tended to drop when the mixed ratio of coal fly ash exceeded 30%, while it reached approx. $1.81gf/cm^3$ when the mixed ratio was 30%. As result of One-Dimensional Compression Test in accordance with the mixed ratio of crushed stone and coal fly ash, the change in void ratio by particle crushing was at the highest level in the case of coal fly ash 100%, while the lowest level in the case of crushed stone 100%. In the case of mixed materials of crushed stone and coal fly ash, compression index was at the lowest level in case of coal fly ash 30%, and therefore this ratio of mixed material was judged to be the most stable from an engineering aspect.

Development of Thermal-Conductivity Measurement System Using Cryocooler (극저온 냉동기를 이용한 열전도도 측정 시스템 개발)

  • Shin, Dong-Won;Kim, Dong-Lak;Yang, Hyung-Suk;Choi, Yeon-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.93-100
    • /
    • 2011
  • The thermal property of insulation material is essential in developing a high-temperature superconductor (HTS) power cable to be operated at around liquid-nitrogen temperature. Unlike metallic materials, nonmetallic materials have a high thermal resistance; therefore, accurate estimate of the heat flow is difficult in the case of nonmetallic materials. The aim of this study is to develop an instrument for precisely measuring the thermal conductivity of insulating materials over a temperature range of 30 K to approximately the room temperature by using a cryocooler. The details of the thermal-conductivity measurement system, including the design and fabrication processes, are described in this paper. In addition, the design optimization to minimize unavoidable heat leakage from room temperature is discussed.

A Study on Multiple Bases for Development of Natural Adhesives for Woodcraft using Cellulose Extracts from Wood and their Application Potential - Focused on Salicis radicis cortex, hibiscus, Chinese wild peach resin - (셀룰로오스계 목재 추출 성분을 이용한 목공예용 천연 접착제의 개발 및 적용 가능성에 대한 복합적 기반 연구 - 유근피·황촉규·도교 중심으로 -)

  • Wi, Koang Chul;Oh, Seung Jun;Han, Won Sik;Park, Min Sun
    • Korea Science and Art Forum
    • /
    • v.37 no.5
    • /
    • pp.239-248
    • /
    • 2019
  • This study started from the need to improve one of shortcomings of synthetic PVAc adhesives - potential physical harm and environmental hazards to the workers or their users. As a matter of fact, PVAc adhesives are currently mainly used because of their convenience and economy for the production of woodcrafts. The purpose of this study was to develop natural adhesives through research on natural adhesives in step with the current increase of societal attention to environmental friendliness and rapid surge in their demand in the face of such problems. So, the study attempted research on the bases to develop natural adhesives for woodcraft, using cellulose extracts from wood - natural adhesive material. The findings of the study were as follows. Firstly, natural adhesives showed the improved effect in the field of adhesive strength, a basic physical property by 0.2 - 4 times compared with the existing materials and the study confirmed they had the similar or stable pH value. Besides, they had good reversibility, demonstrating their basic physical property as a natural adhesive for woodcraft. While, their durability to ultraviolet ray degradation also showed an excellent result value being better by 1.5 - 8.5 times than the existing materials. The study expects natural adhesives with improved and better performances compared with the existing materials could be developed, if further research on adhesive strength, antibiosis, conservative property were to continue by developing refinery technology for cellulose extracts from wood and rendering the functionality to them.

Storage Media for the Vehicle Heat Storage System by Using Ba(OH)2·8H2O System (Ba(OH)2·8H2O계 자동차 축열시스템의 저장매체)

  • Kim, H.C.;Song, Y.H.;Lee, C.T.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.722-728
    • /
    • 1997
  • This study was investigated to find storage material of thermal energy storage system for a vehicle with the basic material of $Ba(OH)_2{\cdot}8H_2O$ and to test a feasibility of it. Experiment was investigated usability for long time and state change and thermal property after cycle with $Ba(OH)_2{\cdot}8H_2O$ and misxture doping additive to it. The result of this research indicated the mixture adding $Sr(OH)_2{\cdot}8H_2O$ to $Ba(OH)_2{\cdot}8H_2O$ have high feasibility as storage material for thermal energy storage system. This mixture did not exhibit the state change during 1300 cycles and the rate of decrease of heat realese energy was about 2%, relatively low value.

  • PDF

A Study on the Improvement of Cold Protective Clothing for Mailman (우편배달원 방안복 개선을 위한 연구)

  • Kwon, Myoung-Sook;Seok, Hye-Jung
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.8
    • /
    • pp.14-23
    • /
    • 2007
  • The purpose of this study was to investigate the present condition of cold protective clothing for mailman, to improve its design in movement, fitness, and other functions, and supply basic data for its performance evaluation. The results are as follows : The 46.60% of those questioned did not satisfy current clod protective clothing fer mailman. Especially, they considered dissatisfactory in properties such as waterproof, comfort, activity, and sweat absorption. The newly developed cold protective clothing is two-piece style composed of jacket and pants. Both jacket and pants are composed of inner and outer clothing individually. In both jacket and pants, their outer clothing's material was waterproof, windproof, and breathable shell fabric on which PTFE film laminated and their inner clothing's material was 100% polyester Polar polis to have better insulation property. The jacket has attachable cap which can be used as rain gear and set-in sleeve with stand collar. It also had big outside patch pockets and side seam pockets to ensure enough storage space. The pants have knee pads to give free movement to knees and slant side pockets. Inner clothing of both jacket and pants can be worn during working inside without out clothing. Insulation of the newly developed cold protective clothing was not better than current one except right hand, left hand and left foo. It is considered that is because thickness of material is the most important factor to influence insulation.