• 제목/요약/키워드: Basic (q-) hypergeometric series

검색결과 15건 처리시간 0.017초

THREE-TERM CONTIGUOUS FUNCTIONAL RELATIONS FOR BASIC HYPERGEOMETRIC SERIES 2φ1

  • KIM, YONG-SUP;RATHIE ARJUN K.;CHOI, JUNE-SANG
    • 대한수학회논문집
    • /
    • 제20권2호
    • /
    • pp.395-403
    • /
    • 2005
  • The authors aim mainly at giving fifteen three-term contiguous relations for the basic hypergeometric series $series\;_2{\phi}_1$ corresponding to Gauss's contiguous relations for the hypergeometric series $series\;_2F_1$ given in Rainville([6], p.71). They also apply them to obtain two summation formulas closely related to a known q-analogue of Kummer's theorem.

CERTAIN NEW WP-BAILEY PAIRS AND BASIC HYPERGEOMETRIC SERIES IDENTITIES

  • Ali, S. Ahmad;Rizvi, Sayyad Nadeem Hasan
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.885-898
    • /
    • 2017
  • The Bailey lemma has been a powerful tool in the discovery of identities of Rogers-Ramanujan type and also ordinary and basic hyper-geometric series identities. The mechanism of Bailey lemma has also led to the concepts of Bailey pair and Bailey chain. In the present work certain new WP-Bailey pairs have been established. We also have deduced a number of basic hypergeometric series identities as an application of new WP-Bailey pairs.

A TYPE OF FRACTIONAL KINETIC EQUATIONS ASSOCIATED WITH THE (p, q)-EXTENDED 𝜏-HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Khan, Owais;Khan, Nabiullah;Choi, Junesang;Nisar, Kottakkaran Sooppy
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권2호
    • /
    • pp.381-392
    • /
    • 2021
  • During the last several decades, a great variety of fractional kinetic equations involving diverse special functions have been broadly and usefully employed in describing and solving several important problems of physics and astrophysics. In this paper, we aim to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended 𝜏 -hypergeometric function and the (p, q)-extended 𝜏 -confluent hypergeometric function, by mainly using the Laplace transform. It is noted that the main employed techniques for this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform, Laplace and Sumudu transforms, Laplace and Fourier transforms, P𝛘-transform, and an alternative method.

A POWER SERIES ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE UNIT ARGUMENT WHICH ARE INVOLVED IN BELL POLYNOMIALS

  • Choi, Junesang;Qureshi, Mohd Idris;Majid, Javid;Ara, Jahan
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.169-187
    • /
    • 2022
  • There have been provided a surprisingly large number of summation formulae for generalized hypergeometric functions and series incorporating a variety of elementary and special functions in their various combinations. In this paper, we aim to consider certain generalized hypergeometric function 3F2 with particular arguments, through which a number of summation formulas for p+1Fp(1) are provided. We then establish a power series whose coefficients are involved in generalized hypergeometric functions with unit argument. Also, we demonstrate that the generalized hypergeometric functions with unit argument mentioned before may be expressed in terms of Bell polynomials. Further, we explore several special instances of our primary identities, among numerous others, and raise a problem that naturally emerges throughout the course of this investigation.

q-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN THREE VARIABLES

  • Choi, June-Sang
    • 호남수학학술지
    • /
    • 제34권3호
    • /
    • pp.327-340
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Very recently, Choi defined a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}^2_n({\cdot})$ and presented their several generating functions. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in m variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, in the sequel of the above results for their possible general $q$-extensions in several variables, again, we aim at trying to define a $q$-extension of the generalized three variable Gottlieb polynomials ${\varphi}^3_n({\cdot})$ and present their several generating functions.

$q$-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN TWO VARIABLES

  • Choi, Junesang
    • 충청수학회지
    • /
    • 제25권2호
    • /
    • pp.253-265
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subse- quently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}_{n}^{m}(\cdot)$. Here, we aim at defining a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}_{n}^{2}(\cdot)$ and presenting their several generating functions.

ON FOUR NEW MOCK THETA FUNCTIONS

  • Hu, QiuXia
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.345-354
    • /
    • 2020
  • In this paper, we first give some representations for four new mock theta functions defined by Andrews [1] and Bringmann, Hikami and Lovejoy [5] using divisor sums. Then, some transformation and summation formulae for these functions and corresponding bilateral series are derived as special cases of 2𝜓2 series $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a,c;q)_n}{(b,d;q)_n}}z^n$$ and Ramanujan's sum $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a;q)_n}{(b;q)_n}}z^n$$.