• Title/Summary/Keyword: Baseline Analysis

Search Result 1,504, Processing Time 0.032 seconds

The Analysis of the GPS Data Processing of the NGII CORS by Bernese and TGO (Bernese와 TGO에 의한 국내 GPS 상시관측소 자료처리 결과 분석)

  • Kim, Ji-Woon;Kwon, Jay-Hyoun;Lee, Ji-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.549-559
    • /
    • 2008
  • This study verified the limitations of commercial GPS data processing software and the applicability on precise positioning through comparing the processing results between Bernese and TGO under various conditions. To achieve the goal, we selected three nationwide station data and two smaller local data to constitute networks. By using Bernese and TGO, those networks are processed through the baseline analysis and the network adjustment. The comparative analysis was carried out, in terms of software, baseline length and network scale, observation duration, and number of fixed points. In the comparison between softwares, the scientific software was excellent in accuracy. It was confirmed that, as GPS-related technology is developed, the performance of the receiver was enhanced. And, in parallel with this, even the functionalities of the commercial software were tremendously enhanced. The difference, however, in result between the scientific and commercial software are still exist even if it is not big. Therefore, this study confirms that the scientific software should be used when the most precise position is necessary to be computed, especially if baseline vectors are big.

A novel amnion-chorion allograft membrane combined with a coronally advanced flap: a minimally invasive surgical therapy to regenerate interdental papillary soft tissue recession - a six-month postoperative image analysis-based clinical trial

  • Pitale, Unnati;Pal, Pritish Chandra;Boyapati, Ramanarayana;Bali, Ashish;Varma, Manish;Khetarpal, Shaleen
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.6
    • /
    • pp.438-444
    • /
    • 2021
  • Objectives: Loss of the interdental papilla is multi-factorial and creates a multitude of problems. Autogenous connective tissue/biomaterial-based regeneration has been attempted for decades to reconstitute the black space created due to the loss of papilla. The aim of this present study was to regenerate papillary recession defects using an amnion-chorion membrane (ACM) allograft and to evaluate the clinical outcome up to six months postoperatively. Materials and Methods: Twenty patients with 25 Nordland and Tarnow's Class I/II interdental papillary recession defects were treated with ACM and coronal advancement of the gingivo-papillary unit via a semilunar incision on the labial aspect followed by a sulcular incision in the area of interest. A photographic image analysis was carried out using the GNU Image Manipulation software program from the baseline to three and six months postoperatively. The black triangle height (BTH) and the black triangle width (BTW) were calculated using the pixel size and were then converted into millimeters. The mean and standard deviation values were determined at baseline and then again at three and six months postoperatively. The probability values (P<0.05 and P≤0.01) were considered statistically significant and highly significant, respectively. An analysis of variance and post hoc Bonferroni test were carried out to compare the mean values. Results: Our evaluation of the BTH and BTW showed a statistically and highly significant difference from the baseline until both three and six months postoperatively (P=0.01). A post hoc Bonferroni test disclosed a statistically significant variance from the baseline until three and six months postoperatively (P<0.05) and a non-significant difference from three to six months after the procedure (P≥0.05). Conclusion: An ACM allograft in conjunction with a coronally advanced flap could be a suitable minimally invasive alternative for papillary regeneration.

Prediction of Decompensation and Death in Advanced Chronic Liver Disease Using Deep Learning Analysis of Gadoxetic Acid-Enhanced MRI

  • Subin Heo;Seung Soo Lee;So Yeon Kim;Young-Suk Lim;Hyo Jung Park;Jee Seok Yoon;Heung-Il Suk;Yu Sub Sung;Bumwoo Park;Ji Sung Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1269-1280
    • /
    • 2022
  • Objective: This study aimed to evaluate the usefulness of quantitative indices obtained from deep learning analysis of gadoxetic acid-enhanced hepatobiliary phase (HBP) MRI and their longitudinal changes in predicting decompensation and death in patients with advanced chronic liver disease (ACLD). Materials and Methods: We included patients who underwent baseline and 1-year follow-up MRI from a prospective cohort that underwent gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance between November 2011 and August 2012 at a tertiary medical center. Baseline liver condition was categorized as non-ACLD, compensated ACLD, and decompensated ACLD. The liver-to-spleen signal intensity ratio (LS-SIR) and liver-to-spleen volume ratio (LS-VR) were automatically measured on the HBP images using a deep learning algorithm, and their percentage changes at the 1-year follow-up (ΔLS-SIR and ΔLS-VR) were calculated. The associations of the MRI indices with hepatic decompensation and a composite endpoint of liver-related death or transplantation were evaluated using a competing risk analysis with multivariable Fine and Gray regression models, including baseline parameters alone and both baseline and follow-up parameters. Results: Our study included 280 patients (153 male; mean age ± standard deviation, 57 ± 7.95 years) with non-ACLD, compensated ACLD, and decompensated ACLD in 32, 186, and 62 patients, respectively. Patients were followed for 11-117 months (median, 104 months). In patients with compensated ACLD, baseline LS-SIR (sub-distribution hazard ratio [sHR], 0.81; p = 0.034) and LS-VR (sHR, 0.71; p = 0.01) were independently associated with hepatic decompensation. The ΔLS-VR (sHR, 0.54; p = 0.002) was predictive of hepatic decompensation after adjusting for baseline variables. ΔLS-VR was an independent predictor of liver-related death or transplantation in patients with compensated ACLD (sHR, 0.46; p = 0.026) and decompensated ACLD (sHR, 0.61; p = 0.023). Conclusion: MRI indices automatically derived from the deep learning analysis of gadoxetic acid-enhanced HBP MRI can be used as prognostic markers in patients with ACLD.

Lifetime Risk Assessment of Lung Cancer Incidence for Nonsmokers in Japan Considering the Joint Effect of Radiation and Smoking Based on the Life Span Study of Atomic Bomb Survivors

  • Shimada, Kazumasa;Kai, Michiaki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.83-97
    • /
    • 2021
  • Background: The lifetime risk of lung cancer incidence due to radiation for nonsmokers is overestimated because of the use of the average cancer baseline risk among a mixed population, including smokers. In recent years, the generalized multiplicative (GM)-excess relative risk (ERR) model has been developed in the life span study of atomic bomb survivors to consider the joint effect of radiation and smoking. Based on this background, this paper discusses the issues of radiation risk assessment considering smoking in two parts. Materials and Methods: In Part 1, we proposed a simple method of estimating the baseline risk for nonsmokers using current smoking data. We performed sensitivity analysis on baseline risk estimation to discuss the birth cohort effects. In Part 2, we applied the GM-ERR model for Japanese smokers to calculate lifetime attributable risk (LAR). We also performed a sensitivity analysis using other ERR models (e.g., simple additive (SA)-ERR model). Results and Discussion: In Part 1, the lifetime baseline risk from mixed population including smokers to nonsmokers decreased by 54% (44%-60%) for males and 24% (18%-29%) for females. In Part 2, comparison of LAR between SA- and GM-ERR models showed that if the radiation dose was ≤200 mGy or less, the difference between these ERR models was within the standard deviation of LAR due to the uncertainty of smoking information. Conclusion: The use of mixed population for baseline risk assessment overestimates the risk for lung cancer due to low-dose radiation exposure in Japanese males.

Automatic Selection of Optimal Parameter for Baseline Correction using Asymmetrically Reweighted Penalized Least Squares (Asymmetrically Reweighted Penalized Least Squares을 이용한 기준선 보정에서 최적 매개변수 자동 선택 방법)

  • Park, Aaron;Baek, Sung-June;Park, Jun-Qyu;Seo, Yu-Gyung;Won, Yonggwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.124-131
    • /
    • 2016
  • Baseline correction is very important due to influence on performance of spectral analysis in application of spectroscopy. Baseline is often estimated by parameter selection using visual inspection on analyte spectrum. It is a highly subjective procedure and can be tedious work especially with a large number of data. For these reasons, it is an objective and automatic procedure is necessary to select optimal parameter value for baseline correction. Asymmetrically reweighted penalized least squares (arPLS) based on penalized least squares was proposed for baseline correction in our previous study. The method uses a new weighting scheme based on the generalized logistic function. In this study, we present an automatic selection of optimal parameter for baseline correction using arPLS. The method computes fitness and smoothness values of fitted baseline within available range of parameters and then selects optimal parameter when the sum of normalized fitness and smoothness gets minimum. According to the experimental results using simulated data with varying baselines, sloping, curved and doubly curved baseline, and real Raman spectra, we confirmed that the proposed method can be effectively applied to optimal parameter selection for baseline correction using arPLS.

Detecting Anomalies in Time-Series Data using Unsupervised Learning and Analysis on Infrequent Signatures

  • Bian, Xingchao
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1011-1016
    • /
    • 2020
  • We propose a framework called Stacked Gated Recurrent Unit - Infrequent Residual Analysis (SG-IRA) that detects anomalies in time-series data that can be trained on streams of raw sensor data without any pre-labeled dataset. To enable such unsupervised learning, SG-IRA includes an estimation model that uses a stacked Gated Recurrent Unit (GRU) structure and an analysis method that detects anomalies based on the difference between the estimated value and the actual measurement (residual). SG-IRA's residual analysis method dynamically adapts the detection threshold from the population using frequency analysis, unlike the baseline model that relies on a constant threshold. In this paper, SG-IRA is evaluated using the industrial control systems (ICS) datasets. SG-IRA improves the detection performance (F1 score) by 5.9% compared to the baseline model.

Estimation of the Energy Saving Potential using Energy Bandwidth Analysis in Manufacturing Plant (에너지 대역분석 기법을 이용한 생산플랜트에서 에너지절감 잠재량 산정)

  • Park, Hyung-Joon;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.236-240
    • /
    • 2011
  • Currently one of the most importance issues in industrial sector is energy cost and energy efficiency. The manufacturing plants especially have made many efforts to reduce energy cost by implementing maintenances. But in many cases, they are not aware that how much energy could be saved more. If we know the best energy consumption, which signifies energy baseline, we can control the intensity of maintenances. One way to obtain the baseline is using proper statistics from a specific plant, a sector of industry. Energy bandwidth signifies the gap between actual Specific Energy Consumption(SEC) of a certain plant and minimum SEC of the best plant, and estimate energy saving potential(ESP) is a result of bandwidth analysis. We chose a model plant and implemented some maintenance for a year, and then we obtained ESP. Additionally we could determine the decreased amount of carbon emissions from the plant using Carbon Emissions Factor(CEF) by Intergovernmental Panel on Climate Change(IPCC).

Instrumentation and Structural Health Monitoring of Bridges (교량구조물의 헬스모니터 링을 위한 진동계측)

  • 김두기;김종인;김두훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.108-122
    • /
    • 2001
  • As bridge design is advancing toward the performance-based design. it becomes increasingly important to monitor and re-evaluate the long-term structural performance of bridges. Such information is essential in developing performance criteria for design. In this research. sensor systems for long-term structural performance monitoring have been installed on two highway bridges. Pre1iminary vibration measurement and data analysis have been performed on these instrumented bridges. On one bridge, ambient vibration data have been collected. based on which natural frequencies and mode shapes have been extracted using various methods and compared with those obtained by the preliminary finite element analysis. On the other bridge, braking and bumping vibration tests have been carried out using a water truck In addition to ambient vibration tests. Natural frequencies and mode shapes have been derived and the results by the breaking and bumping vibration tests have been compared. For the development of a three dimensional baseline finite element model, the new methodology using a neural network is proposed. The proposed one have been verified and applied to develop the baseline model of the bridge.

  • PDF

Data Modeling for Developing the Baseline Network Analysis Software of Korean EMS System (한국형 EMS 시스템의 Baseline 계통 해석용 소프트웨어 개발을 위한 데이터 모델링)

  • Yun, Sang-Yun;Cho, Yoon-Sung;Lee, Wook-Hwa;Lee, Jin;Sohn, Jin-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1842-1848
    • /
    • 2009
  • This paper summarizes a data modeling for developing the baseline network analysis software of the Korean energy management system (EMS). The study is concentrated on the following aspects. First, the data for operating the each application software are extracted. Some of the EMS network application softwares are selected for basis model. Those are based on the logical functions of each software and are not considered the other softwares. Second, the common data are extracted for equipment model and topological structure of power system in Korea. We propose the application common model(ACM) that can be applied whole EMS network application softwares. The ACM model includes the hierarchy and non-hierarchy power system structure, and is connected each other using the direct and indirect link. Proposed database model is tested using the Korea Electric Power Corporation(KEPCO) system. The real time SCADA data are provided for the test. Through the test, we verified that the proposed database structure can be effectively used to accomplish the Korean EMS system.

Classification of Three Different Emotion by Physiological Parameters

  • Jang, Eun-Hye;Park, Byoung-Jun;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.271-279
    • /
    • 2012
  • Objective: This study classified three different emotional states(boredom, pain, and surprise) using physiological signals. Background: Emotion recognition studies have tried to recognize human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 122 college students participated in this experiment. Three different emotional stimuli were presented to participants and physiological signals, i.e., EDA(Electrodermal Activity), SKT(Skin Temperature), PPG(Photoplethysmogram), and ECG (Electrocardiogram) were measured for 1 minute as baseline and for 1~1.5 minutes during emotional state. The obtained signals were analyzed for 30 seconds from the baseline and the emotional state and 27 features were extracted from these signals. Statistical analysis for emotion classification were done by DFA(discriminant function analysis) (SPSS 15.0) by using the difference values subtracting baseline values from the emotional state. Results: The result showed that physiological responses during emotional states were significantly differed as compared to during baseline. Also, an accuracy rate of emotion classification was 84.7%. Conclusion: Our study have identified that emotions were classified by various physiological signals. However, future study is needed to obtain additional signals from other modalities such as facial expression, face temperature, or voice to improve classification rate and to examine the stability and reliability of this result compare with accuracy of emotion classification using other algorithms. Application: This could help emotion recognition studies lead to better chance to recognize various human emotions by using physiological signals as well as is able to be applied on human-computer interaction system for emotion recognition. Also, it can be useful in developing an emotion theory, or profiling emotion-specific physiological responses as well as establishing the basis for emotion recognition system in human-computer interaction.