International journal of advanced smart convergence
/
제6권2호
/
pp.9-15
/
2017
According to a recent survey, most elementary and secondary school students nationwide are stressed out by their academic records. Furthermore most of high school students in Korea have to study under the great duress. Some of them who can't overcome the academic stress finalize their life by suiciding. A study has found that it is one of the leading causes of stimulating the thought of committing suicide in Korean high school students. So it is necessary to reduce the high school student's suicide rate. Main content of this research is to implement a personalized music recommendation system. Music therapy can help the student deal with the stress, anxiety and depression problems. Proposed system works as a therapist. The music choice and duration of the music is adjusted based on the student's current emotion recognized automatically from EEG. If the happy emotion is not induced by the current music, the system would automatically switch to another one until he or she feel happy. Proposed system is personalized brain music treatment that is making a brain training application running on smart phone or pad. That overcomes the critical problems of time and space constraints of existing brain training program. By using this brain training program, student can manage the stress easily without the help of expert.
소셜 네트워크를 비롯해 다양한 소셜 미디어 서비스들에서 대량의 멀티미디어 콘텐츠들이 공유되고 있다. 소셜 네트워크에는 사용자의 현재 상황과 관심사가 드러나기 때문에 이러한 특징들을 추천시스템에 적용한다면 만족도가 높은 개인화된 추천이 가능할 것이다. 또한 음악을 감정에 따라 분류하고 사용자의 소셜 네트워크를 분석해 사용자가 최근 느끼고 있는 감정이나 현재 상황에 대해 분석한 정보를 이용한다면 사용자의 음악을 추천할 때에 유용할 것이다. 본 논문에서는 음악을 분류하기 위한 감정 모델을 만들고, 감정모델에 따라 음악을 분류하여 소셜 네트워크에 나타나는 사용자의 현재 감정 상태를 추출하여 음악추천을 하는 방법을 제안하고 실험을 통해 제안한 방법의 유효성을 검증한다.
본 연구의 목적은 한국십진분류법 제4판 670 음악분야 전개의 분석을 통해 문제점을 파악하여 개선방안을 제시함으로써 다음 개정판의 음악분류 전개를 위한 토대를 마련하고자 한 것이다. 이를 위하여 먼저 한국십진분류법 초판부터 제4판까지의 음악분야 전개의 변천과정과 제4판의 개정방침을 살펴보고, 제4판 음악분야 전개상황을 요목과 세목으로 나누어 분석하였다. 그리고 분석된 분류전개에서 음악주제 지식의 내용과 특성을 토대로 문제점을 확인하고 이에 따른 개선방안을 제시하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권10호
/
pp.3355-3372
/
2022
Composing music is an inspired yet challenging task, in that the process involves many considerations such as assigning pitches, determining rhythm, and arranging accompaniment. Algorithmic composition aims to develop algorithms for music composition. Recently, algorithmic composition using artificial intelligence technologies received considerable attention. In particular, computational intelligence is widely used and achieves promising results in the creation of music. This paper attempts to provide a survey on the music generation based on the Monte Carlo (MC) algorithm. First, transform the MIDI music format files to digital data. Among these data, use the logistic fitting method to fit the time series, obtain the time distribution regular pattern. Except for time series, the converted data also includes duration, pitch, and velocity. Second, using MC simulation to deal with them summed up their distribution law respectively. The two main control parameters are the value of discrete sampling and standard deviation. Processing the above parameters and converting the data to MIDI file, then compared with the output generated by LSTM neural network, evaluate the music comprehensively.
최근 정신지체아들을 위한 음악교육의 중요성이 크게 부각되고 있으나 그들의 인지적 정의적 결함으로 인해 종래의 일반적인 음악수업 방식만으로는 음악 인지를 발달시키는 학습을 기대하기 어렵다. 이에 본 연구에서는 MMCP (Manhattanville Music Curriculum Program)이론에 근거한 정신지체아의 음악인지능력 (음악 동일성, 음악 유목화, 음악 서열화)을 향상시키기 위한 컨텐츠를 설계하였다. MMCP 이론은 음악의 본질을 이해시키며 특징음악 (18~19C의 음악) 만을 취급하는 음악이 아닌 모든 민족의 음악문화를 이해하고 포함하는 보다 포괄적인 음악교육이다. 본 시스템으로 기대할 수 있는 효과로는 첫째, 정신지체장애인의 음악적 인지 발달 뿐 아니라 인지적, 신체적, 사회적, 정서적 발달을 고양시킬 수 있다. 둘째, 정신지체장애인을 위한 개별화 음악교육이 가능하다. 셋째, 능동적이고 상호작용적인 음악교육이 가능하다.
본 논문에서는 음악 데이터베이스의 멜로디와 사용자가 기술한 멜로디의 기하학적 구조를 비교하는 음악 검색 시스템을 제안하고 있다. 시스템은 멜로디의 구조적이고 상황적인 특징들을 분석하여 쿼리 멜로디와 데이터베이스의 멜로디가 일치성을 찾고자 한다. 검색 방법은 사전 처리 단계와 인식 단계로 이루어진 기하하적 해싱 알고리즘에 기반을 두고 있다. 사전 처리 단계 동안 구조적 특징을 찾기 위해서 음악의 멜로디를 여러 개의 프래그먼트(fragment)들로 분할하고 그 프래그먼트의 각 음의 높이 및 길이를 분석한다. 상황적 특징을 찾기 위해서 각 프래그먼트의 중심 화음을 찾는다. 인식 단계 동안 사용자가 입력한 쿼리 멜로디를 여러 개의 프래그먼트들로 분할하고 구조적이고 상황적 특성이 유사한 모든 프래그먼트들을 데이터베이스에서 검색한다. 투표는 각 프래그먼트에 대해 이루어지고 총 득표수가 최대인 음악이 쿼리 멜로디와 일치하는 멜로디를 갖는 음악이 된다. 이러한 접근 방법을 이용하여, 음악 데이터베이스에서 유사한 멜로디를 빠르게 찾을 수 있다. 또한 이 방법은 표절 음악을 감지하는데 적용될 수 있다.
본 논문에서는 실제 방송 환경에 적용 가능한 방송용 음원 모니터링 시스템을 구축하기 위한 사전연구로 방송 오디오 신호로부터 음악신호 구간을 자동으로 검출할 수 있는 시스템을 제안하였다. 음악구간과 비음악구간의 구분을 위한 특징으로는 사람의 음성 발화 특성을 반영하여 에너지 표준편차와 log 에너지 표준편차 그리고 log 에너지 평균 등 3개의 간단한 시간영역 특징들을 사용하였으며 최종 음악신호 구간 판별은 각 에너지 한계값(threshold)을 이용한 Rule-base 분류를 기반으로 하였다. 실제 FM 라디오 방송 신호를 24시간 녹음하여 진행한 모의실험에서 음악구간 인식률은 96%, 비-음악구간 인식률은 87%를 나타내어 방송용 음원 모니터링 시스템의 전처리기로 손색이 없음을 확인할 수 있었다.
최근 스마트 기기 사용자의 증가에 따라 모바일 음악에 대한 수요와 생산이 꾸준히 증가하고 있다. 이에 따라 대중화된 음악의 폭이 넓어지면서 사용자가 선호하는 음악에 대한 선택의 기준 또한 매우 다양해지고 복잡해지는 추세이다. 이러한 이유로 모바일 환경에서 사용자 개인이 선호하는 음악을 정교하게 추천하기 위한 지능적 음악 추천 기법에 대한 연구가 활발히 진행되고 있다. 그러나 기존의 음악 추천시스템은 청취로그를 이용한 단순 추천 방법을 사용하고 있어 사용자의 선호도를 제대로 고려하지 못하고 있다. 본 논문에서는 사용자의 선호도를 반영한 개인화된 적응형 음악 추천 시스템을 제안한다. 본 시스템에서는 계층적 의사결정 도구인 AHP를 이용하여 사용자의 개개인의 음악적 선호도를 반영한 음악 추천이 가능토록 하였으며, 베이지안 네트워크 기반의 사용자 피드백 통해 지속적인 사용자의 음악적 선호도를 반영하도록 하였다. 본 시스템의 성능을 평가하기 위해 12명의 실험자를 각각 3명씩 4그룹으로 나누어 실험하였으며 그 결과 87.5%의 추천 만족도를 얻었다.
대량의 음악 콘텐츠가 유통되는 초고속 인터넷 환경에서, 사용자가 원하는 음악 콘텐츠를 효과적으로 검색하기 위한 연구들이 다양하게 수행되고 있다. 특히, 음악 정보 검색(MIR: Music Information Retrieval) 연구에 감성 모델을 접목한 음악 추천 시스템 개발도 활발하게 진행되고 있다. 그러나, 적용된 감성 모델이 단순하고, 한국어를 대상으로 하지 않아 한국어의 의미적 감성 표현 처리에 한계점을 가진다. 따라서, 본 논문에서는, 한국어를 기반으로, 기존의 감성 모델을 확장한 새로운 감성 모델(KORean Emotional Model : KOREM)을 제안하고, 이를 온톨로지(Music EMotional Ontology : MEMO)로 설계 및 구현하였다. 이를 통해, 한글로 서술된 폭넓고 다양한 감성적 표현을 이용한 음악 콘텐츠의 분류, 저장 및 검색이 가능하다.
음악치료는 장애아동 및 정신치료에 많은 효과를 보이고 있다. 오늘날의 음악치료 시스템은 구체적인 치료 시스템이 구축되어 있지 않은 상황으로, 음악 치료사들이 정확한 치료를 하기 위해 다양한 음악치료 사례들과 치료 이력 데이터들을 분석하고, 해당 환자 또는 내담자에게 가장 적합한 치료를 시행해야 하지만, 현실은 여러 가지 요인들로 인해 많은 어려움이 따르고 있다. 이를 해결하고자 본 논문에서는 기존 치료 데이터와 텍스트 마이닝 기술을 융합한 음악치료 지식관리 모델을 제안한다. 제안 모델을 활용하면 유사한 사례검색 및 환자에 관련된 구체적이고 확실한 데이터들을 기반으로 환자 또는 내담자로 하여금 정확하고 효과적인 치료가 가능하다. 이를 통해서 음악치료의 본래 목적과 그 효과를 최대로 이끌어 내는 효과를 기대할 수 있고 나아가 많은 환자들의 치료에 도움이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.