• Title/Summary/Keyword: Base stopper

Search Result 3, Processing Time 0.023 seconds

Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth

  • Halim, Miah Abdul;Kim, Dae Heum;Park, Jae Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.707-714
    • /
    • 2016
  • We present a piezoelectric energy harvester with stopper-engaged dynamic magnifier which is capable of significantly increasing the operating bandwidth and the energy (power) harvested from a broad range of low frequency vibrations (<30 Hz). It uses a mass-loaded polymer beam (primary spring-mass system) that works as a dynamic magnifier for another mass-loaded piezoelectric beam (secondary spring-mass system) clamped on primary mass, constituting a two-degree-of-freedom (2-DOF) system. Use of polymer (polycarbonate) as the primary beam allows the harvester not only to respond to low frequency vibrations but also generates high impulsive force while the primary mass engages the base stopper. Upon excitation, the dynamic magnifier causes mechanical impact on the base stopper and transfers a secondary shock (in the form of impulsive force) to the energy harvesting element resulting in an increased strain in it and triggers nonlinear frequency up-conversion mechanism. Therefore, it generates almost four times larger average power and exhibits over 250% wider half-power bandwidth than those of its conventional 2-DOF counterpart (without stopper). Experimental results indicate that the proposed device is highly applicable to vibration energy harvesting in automobiles.

Shock Resistance Characteristic of Auto Focus Actuator using Finite Element Method and Drop Impact Test (유한요소해석과 낙하충격 실험을 통한 자동초점 액추에이터의 내충격 특성 향상)

  • Shin, Min-Ho;Kim, Hyo-Jun;Park, Gyusub;Kim, Young-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.56-61
    • /
    • 2013
  • The recent increased use of mobile phone has resulted in a technical focusing on reliability issues related to drop performance. Since mobile phone may be dropped several times during their use, it is required to survive common drop accidents. The plastic injection parts such as base stopper and carrier in the encoder type actuator can be broken easily in the actual reliability test of 1.5m free drop. So, we analyzed the shock resistance characteristics of auto focus actuator with variables in the material properties using finite element method. By applying the new resin materials, we can decrease the breakage of plastic injection parts and improve the reliability of mobile phone.

A study on Mass Unbalance Vibration Generated from 200MW Steam Turbine Synchro Clutch Coupling (증기터빈용 Synchro Clutch Coupling에서 발생하는 진동에 관한 연구)

  • Shim, Eung-Gu;Kim, Young-Kyun;Moon, Seung-Jae;Lee, Jae-Heon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.232-235
    • /
    • 2008
  • The vibration of steam turbine is caused by Mass Unbalance, Shaft Misalignment, Oil Whip and Rubbing etc. but in turbine which is normally operated and maintained, the Mass Unbalance component possesses the greatest portion. Our power plant has two steam turbines in capacity of 200MW and 135MW respectively and each turbine is supported by 6 journal bearings. However, we had many difficulties because the vibration amplitude of No 3 and 4 Bearings was high during the start-up and operation mode change of steam turbine. But, with this study, we completely solved the vibration problem caused by the mass unbalance of No 1 steam turbine. Until a recent date, No 3 and 4 bearings which support high pressure turbine for No 1 steam turbine had shown about 135${\mu}$m in vibration amplitude (sometimes it increased to 221${\mu}$m maximum. alarm: 6mils, trip: 9mils) at base load. After applying the study, they decreased to about 40${\mu}$m maximum. It is a result from that we did not change the setting value of Bearing Alignment and only changed the assembly position of internal parts in Synchro Clutch Coupling Rachet Wheel which links between high pressure turbine and low pressure turbine, and increased the internal gap and machining of the Pawl stopper surface. In the operation of steam turbine, if the vibration value increases by 1X, we should reduce the vibration of bearing by weight balancing. However, unless the vibration of bearing is declined by the balancing, we will have to disassemble and check the component and find the cause. In this study, We researched the way to lower mass unbalance that is 1X vibration component which has the greatest portion of vibration generated by steam turbine and We got good result by applying the findings of this study.

  • PDF