• Title/Summary/Keyword: Base resin

Search Result 440, Processing Time 0.024 seconds

Evaluation of the physical properties and antibacterial effects on Candida albicans of denture base resin containing silver sulfadiazine (실버 설파다이아진이 첨가된 의치상용 레진의 Candida albicans에 대한 항균평가 및 물성 평가)

  • Yu-Ri Choi;Min-Kyung Kang
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.6
    • /
    • pp.459-466
    • /
    • 2023
  • Objectives: The purpose of this study was to evaluate the physical properties and antibacterial activity of denture base resin with added silver sulfadiazine. Methods: Specimens were made from self-curing denture base resin and silver sulfadiazine as an inorganic antibacterial agent. For physical evaluation of the specimens, surface roughness, surface hardness, and contact angle were measured. Bacterial growth was assessed by optical densityat 600 nm (OD600) and colony forming units (CFU) measurements to confirm antibacterial activity. Results: There was no significant difference in surface roughness, surface hardness, and contact angle in the experimental group containing silver sulfadiazine compared to the control group. In contrast, the experimental group showed a significant decrease in antibacterial activity compared to the control group in terms of OD value. Analysis of CFU confirmed a significant decrease in colonies in the experimental group compared to the control group. Conclusions: Denture base resin containing silver sulfadiazine, an inorganic antibacterial agent, exhibited enhanced antibacterial activity without physical changes. In conclusion, the use of denture base resin containing inorganic antibacterial agents may be expected in the future.

The effect of retention grooves in Acrylic resin tooth denture base bond (합성수지 인공치와 열중합의치상 Resin의 결합시 인공치에 형성하는 유지공의 효과에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.9 no.1
    • /
    • pp.51-55
    • /
    • 1987
  • One of the primary advantages of acrylic resin teeth is their ability to bond chemically to the denture base resins. Fracture od acrylic resin teeth from a maxillary denture, however, is not uncommon. Bonding failures have been attributed to faulty boil-out procedures that fail to eliminate all traces of wax from the ridge lap surfaces of the teeth and to contamination of the ridge lap surface by careless application of tinfoil substitute. Attempts to increase the strength of the bond between acrylic resin teeth and heat-cured denture base resin include grinding the glossy ridge lap surface (in fluid system), painting the ridgelap surface of the teeth with monomer-polymer solution, and cutting retention grooves in the ridge lap surface of the teeth. This latter method has been tested by applying a tensile force in a labial direction to the incisal part of the lingual surface of the acrylic resin teeth. A progressive shear compressive load was applied at an angle to the lingual surface of acrylic resin teeth bonded to denture base acrylic resin. No statistically singificant advantage was derived by preparing retention grooves of different shapes in the ridgelap surface of the denture teeth.

  • PDF

FINITE ELEMENT ANALYSIS OF STRESS AND TEMPERATURE DISTRIBUTION AFFECTED BY VARIOUS RESTORATIVE AND BASE MATERIAL (수복재와 이장재에 따른 응력과 온도 분포의 유한 요소 분석)

  • Lee, Jae-young;Oh, Tae-Suk;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.321-337
    • /
    • 2000
  • Dental caries, one of the most frequent dental disease, become larger because it can be thought as a simple disease. Further more, it can progress to unexpected root canal therapy with fabrication of crown that needs reduction of tooth structure. Base is required in a large caries and ZOE, ZPC, glass ionomer are used frequently as base material. They, with restorative material, can affect the longevity of the restoration. In this study, we assume that the mandibular 1st molar has deep class I cavity. So, installing the 3 base material, 3 kinds of fillings were restored over the base as follows; 1) amalgam only, 2) amalgam with ZPC, 3) amalgam with ZOE, 4) amalgam with GI cement, 5) gold inlay with ZPC, 6) gold inlay with GI cement, 7) composite resin only, 8) composite resin with GI cement. After develop the 3-dimensional model for finite element analysis, we observe the distribution of stress and temperature with force of 500N to apical direction at 3 point on occlusal surface and temperature of 55 degree, 15 degree on entire surface. The analyzed results were as follow : 1. Principal stress produced at the interface of base, dentin, cavity wall was smallest in case of using GI cement as base material under the amalgam. 2. Principal stress produced at the interface of base, dentin, cavity wall was smaller in case of using GI cement as a base material than ZPC under gold inlay. 3. Composite resin-filled tooth showed stress distributed over entire tooth structure. In other words, there was little concentration of stress. 4. ZOE was the most effective base material against hot stimuli under the amalgam and GI cement was the next. In case of gold inlay, GI cement was more effective than ZPC. 5. Composite resin has the small coefficient of thermal conductivity. So, composite resin filling is the most effective insulating material.

  • PDF

Comparison of shear bond strengths of different types of denture teeth to different denture base resins

  • Prpic, Vladimir;Schauperl, Zdravko;Glavina, Domagoj;Catic, Amir;Cimic, Samir
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.376-382
    • /
    • 2020
  • PURPOSE. To determine the shear bond strengths of different denture base resins to different types of prefabricated teeth (acrylic, nanohybrid composite, and cross-linked) and denture teeth produced by computer-aided design/computer-aided manufacturing (CAD/CAM) technology. MATERIALS AND METHODS. Prefabricated teeth and CAD/CAM (milled) denture teeth were divided into 10 groups and bonded to different denture base materials. Groups 1-3 comprised of different types of prefabricated teeth and cold-polymerized denture base resin; groups 4-6 comprised of different types of prefabricated teeth and heat-polymerized denture base resin; groups 7-9 comprised of different types of prefabricated teeth and CAD/CAM (milled) denture base resin; and group 10 comprised of milled denture teeth produced by CAD/CAM technology and CAD/CAM (milled) denture base resin. A universal testing machine was used to evaluate the shear bond strength for all specimens. One-way ANOVA and Tukey post-hoc test were used for analyzing the data (α=.05). RESULTS. The shear bond strengths of different groups ranged from 3.37 ± 2.14 MPa to 18.10 ± 2.68 MPa. Statistical analysis showed significant differences among the tested groups (P<.0001). Among different polymerization methods, the lowest values were determined in cold-polymerized resin.There was no significant difference between the shear bond strength values of heat-polymerized and CAD/CAM (milled) denture base resins. CONCLUSION. Different combinations of materials for removable denture base and denture teeth can affect their bond strength. Cold-polymerized resin should be avoided for attaching prefabricated teeth to a denture base. CAD/CAM (milled) and heat-polymerized denture base resins bonded to different types of prefabricated teeth show similar shear bond strength values.

CYTOTOXICITY OF DENTURE BASE RESINS (의치상 레진의 세포독성에 관한 연구)

  • Kim Seong-Kyun;Chang Ik-Tae;Heo Seong-Joo;Keak Jai-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.309-322
    • /
    • 2002
  • The purpose of this study was to investigate the cytotoxicity and mutagenicity of denture base resins. According to manufacturer's instructions, resin specimens were made. Group 1 : heat-polymerizing acrylic resin (Luciton $199^{(R)}$) Group 2 : heat-polymerizing acrylic resin containing polyhedraloligosilsesquioxane(POSS resin) Group 3 : auto-polymerizing acrylic resin (Repair $Acrylic^{(R)}$) Group 4 : direct relining auto-polymerizing acrylic resin (Tokuso $Rebase^{(R)}$). Fresh specimens 24 hrs. and 72 hrs. soaked specimens in distil)ed water were made. Responses with metabolic assay and mutagenesis assay to eluates from resin specimens were measured. Cultures with medium alone provided controls. Cytotoxicity was assessed with agar overlay test. The results were as follows; 1. Group 4 showed higher cytotoxicity than Group 1, Group 2 and Group 3 in fresh, 24-an4 72-hour immersion caries (p<.05). Group 3 showed higher cytotoxicity than Group 2 in fresh cases and showed higher cytotoxicity than Group 1 and Group 2 in 24-and 72-hour immersion cases (p<.05) . Group 1 and Group 2 showed no significant difference. 2. All acrylic denture base resins skewed significant increase of cell activity as immersion time increased (p<.05). 3. Auto-polymerizing acrylic denture base resins skewed higher cytotoxicity than heat-polymerizing acrylic denture base resins (p<.05). 4. All acrylic denture base resins showed lower mutagenicity than controls (p<.05).

EFFECT OF GOLD ELECTRODEPOSIT ON THE BOND STRENGTH BETWEEN ALLOYS AND VENEERED RESIN (금전착이 치과용 합금과 전장 레진간의 접착 강도에 미치는 영향)

  • Yang, Hong-So;Park, Yeong-Joon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.103-117
    • /
    • 1997
  • The purpose of this experiment was to determind whether the gold electrodeposit on Pd-Ag and Ni-Cr alloys influences on the shear bond strength between veneering resin and silicoated metal surface. All the metal specimens were sandblasted with $250{\mu}m$ aluminum oxide and followed by silicoating and resin veneering. According to the metal surfaces to be veneered, experimental groups were divided into five. Group Prec : Gold alloy without gold coating Group Semi : Pd-Ag alloy without gold coating Group Base : Ni-Cr alloy without gold coating Group Semi-G : Pd-Ag alloy with gold coating Group Base-G : Ni-Cr alloy with gold coating All specimens were thermocycled 1,000 times at temperature of $5^{\circ}C$ to $55^{\circ}C$. The effects of gold electrodeposit on the shear bond strength between resin and metal interface were measured and fractured surface of the resin veneered metal was examined under the scaning electron microscope. The following results were obtained 1. The shear bond strength between resin and metal was $64.51{\pm}11.11Kg/cm^2$ in Prec group, $62.77{\pm}11.23Kg/cm^2$ in Base group and $58.97{\pm}9.20Kg/cm^2$ in Semi Group. There was no significant difference among the groups. 2. The bond strength in groups Semi-G and Base-G decreased about 17%, compared to the nongold-electrodeposit groups(Semi, Base). 3. In groups of non electrodeposit(Prec, Semi, Base), fracture occurred at the interface between alloy and resin, while fracture interface was observed between gold coating and resin in group Semi-G, and between metal substrate and gold coating in group Base-G respectively.

  • PDF

A COMPARATIVE STUDY ON THE DIMENSIONAL CHANGE OF THE DIFFERENT DENTURE BASES

  • Kim, Myung-Joo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.712-721
    • /
    • 2006
  • Statement of problem. Acrylic resin is most commonly used for denture bases. However, acrylic resin has week points of volumetric shrinkage during polymerization that reduces denture fit. The expandability of POSS (Polyhedral Oligomeric Silsesquioxane) containing polymer could be expected to reduce the polymerization shrinkage of denture bases and would increase the adaptability of the denture to the tissue. Purpose. The purpose of this study was to compare the dimensional stability in the conventional acrylic resin base, POSS-containing acrylic resin base, and metal bases. Materials and methods. Thirty six maxillary edentulous casts and dentures of different base were fabricated. Tooth movement and tissue contour change of denture after processing (resin curing, deflasking, decasting and finishing without polishing) and immersion in artificial saliva at $37^{\circ}C$ for 1 week and 4 weeks were measured using digital measuring microscope and threedimensional laser scanner. Results. The results were as follows: 1. The conventional resin group showed significant (p<0.01) dimensional change throughout the procedure (processing and immersion in artificial saliva). 2. After processing, the metal group and POSS resin group showed lower linear and 3-dimensional change than conventional resin group (p<0.01). 3. There was no statistically significant linear and 3-dimensional change after immersion for 1 week and 4 weeks in metal and POSS resin group. 4. In all groups, the midline and alveolar ridge crest area presented smaller 3-dimensional change compared with vestibule and posterior palatal seal area after processing and soaking in artificial saliva for 1 week and 4 weeks (p<0.01). Conclusion. In this study, a reinforced acrylic-based resin with POSS showed good dimensional stability.

Comparison of bond strength between denture base resin and reline resin (의치상 레진과 이장 레진 간의 결합강도 비교)

  • Geum, Young-Hee;Kim, Busob
    • Journal of Technologic Dentistry
    • /
    • v.39 no.3
    • /
    • pp.161-167
    • /
    • 2017
  • Purpose: We compare the bond strength of heat-cured PMMA of Lucitone 199 and QC-20 and Tokuyama Rebase Resin of self-cured resin, which are widely used and well accepted in clinical practice. In order to test the mechanical bonding and chemical bonding, we will compare the bond strength between EstheShot Bright, Smiletone, Repair and Rebase resins. Methods: The denture base resin used in this study was PMMA heat-cured QC-20 and Lucitone 199, polyamide resin EstheShot Bright, Smiletone. And Two types of self-curing Rapid Repair and Tokuyama Rebase were used as resection resins. To measure the bond strength, the denture specimens were fabricated in the size of $10{\times}64{\times}3.5mm$ as instructed by the manufacturer. A surface treatment agent was applied to the cut surfaces of each denture specimen, and the specimens were placed in a preformed silicone mold, and autoclaved excimer resins were prepared. The bending strength of the fabricated specimens was measured using a universal testing machine (STM-5, United Calibration Co., U.S.A.) to measure the three-point bending strength. Results: In both polycarbonate and polyacetal resin, a special resin surface treatment agent showed higher bonding strength than the resin surface treatment agent(p<0.05). Regardless of the type of surface treatment, polycarbonate showed higher bond strength than polyacetal resin(p<0.05). Conclusion: It is considered desirable to use a special surface treating agent for the thermoplastic denture base resin such as polycarbonate and polyacetal resin.

Effects of chemical surface treatment on the shear bond Strength of denture reliners and denture base resin (화학적 표면처리에 따른 의치상 레진과 이장재 간의 전단 결합강도)

  • Choi, Esther;Kwon, Eun-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5745-5751
    • /
    • 2013
  • The purpose of this study was to evaluate the effect of the surface treatment of MMA and TEGDMA concentration, silane coupling agent on the shear bond strength of denture base resin and denture reliners. Denture base resin surface was treated with MMA and TEGDMA concentration, silane coupling agent. After denture reliners were injected bond strength was measured. The results of MMA and TEGDMA concentration on the shear bond strength of Vertex self curing resin showed that the value of MMA 95% and TEGDMA 5%, MMA 90% and TEGDMA 10%, MMA 80% and TEGDMA 20% groups were higher than that of other group(P<0.05). MMA and TEGDMA concentration on the shear bond strength of Kooliner resin showed that the value of MMA 95% and TEGDMA 5%, MMA 90% and TEGDMA 10% were higher than that of other group(P<0.05). Silane coupling agent on the shear bond strength of Vertex self curing resin and Kooliner showed that the value of MMA 95% and silane coupling agent 5% groups was higher than that of other group(P<0.05). Therefore, we could conclude that appropriate chemical surface treatments are supposed to affect the bond of denture base resin and denture reliners.

AN EXPERIMENTAL STUDY OF THE BOND STRENGTH OF DENTURE TEETH BONDED TO DENTURE BASE MATERIALS (의치용 인공치아와 의치상용 레진간의 결합강도에 관한 실험적 연구)

  • Lee, Joo-Hee;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.464-474
    • /
    • 1996
  • A principal advantage of a plastic tooth over a porcelain tooth should be its ability to bond to the denture base material. But plastic teeth could craze and wear easily, so more abrasion resistant plastic denture teeth have been developed. To resist abrasion, the degree of cross-linking was increased, but bonding to denture base meterial became more difficult. The purpose of this study was to evaluate the bond strength of plastic teeth and abrasion resistant teeth bonded to heat-curing, self-curing and light-curing denture base material. Denture tooth molds were chosen that had a>8mm diameter. The denture teeth was bonded to three denture base materials and then machined to the same dimensions. Three denture base materials were used as control groups. Prior to tensile testing, the specimens were thermocycled between $5^{\circ}C\;and\;55^{\circ}C$ for 1000cycles. Tensile testing was performed on an Instron Universal testing mechine. Experimental group ; plastic teeth(Justi Imperial)+heat-curing resin(Lucitone 199) plastic teeth(Justi Imperial)+light-curing resin(Triad) plastic teeth(Justi Imperial)+self-curing resin(Vertex SC) abrasion resistant teeth(IPN)+heat-curing resin(Lucitone 199) abrasion resistant teeth(IPN)+light-curing resin(Triad) abrasion resistant teeth(IPN)+self-curing resin(Vertex SC) Control group ; heat-curing resin(Lucitone 199) light-curing resin (Triad) self-curing resin(Vertex SC). The results were as follows : 1. The denture teeth bonded to heat-curing resin showed the cohesive failure and those bonded to the other resins showed adhesive failure. 2. Tensile bond strength of the plastic teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 3. Tensile bond strength of the abrasion resistant teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 4. Tensile bond strength of the plastic teeth to self-curing resin was not significantly different from that of the abrasion-resistant teeth(p>0.05). 5. Tensile bond strength of the plastic teeth to light-curing resin was significantly greater than that of the abrasion resistant teeth(p<0.01).

  • PDF