• Title/Summary/Keyword: Base module

Search Result 372, Processing Time 0.023 seconds

Evaluation Items of ESM S/W by Case Analysis (사례분석을 통한 ESM S/W의 평가항목)

  • Kang, Deuk-Soo;Yang, Hae-Sool
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.84-94
    • /
    • 2010
  • ESM can do and wishes to investigate ESM software field base technology and investigate ESM software technology, market, standard and evaluation certification trend and develop evaluation model of ESM software that it becomes foundation to protect ESM software effectively that develop quality evaluation model of ESM software in this research by integration security administration system that gather fire wall, IDS, VPN etc. various kind of security solution by one. That is, because reflecting requirement of ESM software, develop evaluation module and proposed evaluation example along with method of exam.

Development of On-line Performance Diagnostic Program of a Helicopter Turboshaft Engine

  • Kong, Chang-Duk;Koo, Young-Ju;Kho, Seong-Hee;Ryu, Hye-Ok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.34-42
    • /
    • 2009
  • Gas turbine performance diagnostics is a method for detecting, isolating and quantifying faults in gas turbine gas path components. On-line precise fault diagnosis can promote greatly reliability and availability of gas turbine in real time operation. This work proposes a GUI-type on-line diagnostic program using SIMULINK and Fuzzy-Neuro algorithms for a helicopter turboshaft engine. During development of the diagnostic program, a look-up table type base performance module are used for reducing computer calculating time and a signal generation module for simulating real time performance data. This program is composed of the on-line condition monitoring program to monitor on-line measuring performance condition, the fuzzy inference system to isolate the faults from measuring data and the neural network to quantify the isolated faults. Evaluation of the proposed on-line diagnostic program is performed through application to the helicopter engine health monitoring.

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

A Study on 3D CAD/NFEA modeling Interface of A-Type RC Bridge Pylon (A-Type RC 주탑의 3차원 정보모델과 비선형 구조해석모델 생성을 위한 인터페이스 연구)

  • Eom, Ji-Young;Choi, Saem-Lee;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of KIBIM
    • /
    • v.4 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • As BIM application continues to increase in civil engineering, in this study, 3D information model for RC(Reinforced Concrete) bridge pylon was developed and verified its effectiveness at the structural-design stage. To define 3D information model of RC A-Type pylon, characteristics of pylon were analyzed and 3D model structure was constructed. The 3D information model, one of the core product of BIM, manages all information generated during all life-cycle of a structure and consequently maximizes the efficiency of utilizing information. Also, this study proposes interface module between input data in structural analysis and 3D model of RC pylon. The module can create the input data for non-linear structural analysis. It is essential to study on method of developing 3D information model and propose a structural analysis model by utilizing 3D model for the effective use of BIM techniques in construction industry. The results of this study can be used as the base data for developing the 3D information model of RC pylon in the structural analysis field.

Study on Torque precision measuring System using Curve Fitting Algorithm (커브피팅 알고리즘이 적용된 토크 정밀 측정 시스템 개발에 관한 연구)

  • Lee, Ki Won;Ha, Jae Seung;Kang, Seung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.1-11
    • /
    • 2012
  • This paper is the study on the development of a torque precision measuring system using the curve fitting algorithm. This system can be divided into the hardware part and the software part. The hardware part consists of the main base board, the DAQ(Data Aquisition) board and Calibration parts. The software part consists of the software filter module and the curve fitting algorithm module. We have tested the torque transducer including the strain gauge for 200 Nm range and have analyzed the data acquired with the curve fitting algorithm by using this system. The DAQ board converts the electric signal induced by the transducer to the digital value precisely by using the shunt calibration procedure. The main board including the curve fitting algorithm calculates the exact digital torque value by using the digital value from the DAQ board. In this study, we confirmed that the result of the appropriate high-order power-series polynomial function is more accurate than the result of the low-order power-series polynomial through the system.

Development of A Haptic Steering System for a Low Cost Vehicle Simulator using Proving Ground Test Data (주행 시험 데이터를 이용한 저가형 차량시물레이터의 조향감 재현 장치 구현)

  • Kim, Sung-Soo;Jeong, Sang-Yoon;Lee, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2005
  • A haptic steering system which reflects steering reaction torque has been developed for a fixed base vehicle simulator. The haptic steering system consists of a steering effort sensor, MR-clutch, AC servo motor and controller. In order to generate realistic steering torque feel to driver and at the same time to meet real-time simulation requirement, 3D torque map is constructed by experimental data and torque generation algorithm using the torque map has been also developed. 3D torque map is constructed using curve fitting and interpolation of the measured values of the steering angle, velocity and steering torque from actual slalom test on the proving ground. In order to carry out performance test of the developed haptic steering system, a fixed based vehicle simulator is constructed by integrating real time vehicle dynamics module, VR-video/audio module, and the haptic steering system. Steering torque and steering angle curves have been obtained from virtual testing in the vehicle simulator and performance of the haptic steering system has been evaluated.

Development of Equipment Operating Condition Diagnosis Model Using the Fuzzy Inference (퍼지추론을 이용한 설비가동상태진단 모델 연구)

  • Jeong, Young-Deuk;Park, Ju-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.109-115
    • /
    • 2005
  • In the study, Methods for operating measures in equipment security to find out dangerousness timely in the system and to need for the prevention and measures. The method for analyzing and reconstructing the causes of accident of equipment in site, and try to save the information of site in real-time and to analyze the state of equipment to look for the factors of accidents. By this analysis, one plan for efficiency of production, Equipment Fault Diagnosis Management and security is integrating and building module of using the Fuzzy Inference based on fuzzy theory. The case study is applied to the industrial electric motors that are necessarily used to all manufacturing equipment. Using the sensor for temperature is attached to gain the site information in real time and to design the hardware module for signal processing. In software, realize the system supervising and automatically saving to management data base by the algorithm based in fuzzy theory from the existing manual input system

Patient Monitoring System Base on U-Healthcare (U-Healthcare 기반의 환자 모니터링 시스템)

  • Jung, Won-Soo;Oh, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.575-582
    • /
    • 2008
  • The existing patient monitoring system when the patient want own information. The patient confirm information through the medical institution. But the patient monitoring system based on the U-Healthcare, the patient always confirms own information through the mobile device including rfid reader. The patient need RFID middleware design to provide wanting service when the RFID reader read patient's tag information. The RFID middleware is consisted of RFID module, ARM processor and RS-232 interface. The RFID module is used to be inputted user information and RS-232 interface pass information by RFID middleware. Also, This system is embodied by specific patient monitoring system using embedded exclusive use ARM processor. In this paper introduces concept and action principle of RFID middleware and embodied patient monitoring system that use Qt.

Resource Allocation Algorithm for Multi-cell Cognitive Radio Networks with Imperfect Spectrum Sensing and Proportional Fairness

  • Zhu, Jianyao;Liu, Jianyi;Zhou, Zhaorong;Li, Li
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1153-1162
    • /
    • 2016
  • This paper addresses the resource allocation (RA) problem in multi-cell cognitive radio networks. Besides the interference power threshold to limit the interference on primary users PUs caused by cognitive users CUs, a proportional fairness constraint is used to guarantee fairness among multiple cognitive cells and the impact of imperfect spectrum sensing is taken into account. Additional constraints in typical real communication scenarios are also considered-such as a transmission power constraint of the cognitive base stations, unique subcarrier allocation to at most one CU, and others. The resulting RA problem belongs to the class of NP-hard problems. A computationally efficient optimal algorithm cannot therefore be found. Consequently, we propose a suboptimal RA algorithm composed of two modules: a subcarrier allocation module implemented by the immune algorithm, and a power control module using an improved sub-gradient method. To further enhance algorithm performance, these two modules are executed successively, and the sequence is repeated twice. We conduct extensive simulation experiments, which demonstrate that our proposed algorithm outperforms existing algorithms.