• Title/Summary/Keyword: Base material

Search Result 1,936, Processing Time 0.028 seconds

Base Pattern Development of Protective Clothing - Focusing on Protective Clothing for Riot Policewomen - (보호복 상의 베이스 패턴 개발 - 여경보호복을 중심으로 -)

  • Kim, Hyo-Sook;Kim, Ji-Hyeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.3
    • /
    • pp.207-224
    • /
    • 2015
  • Protective clothing for riot policewomen is worn by policewomen to protect their body at suppressing a riot. Plastic guards of Nylon 66 material are attached to the base of E.V.A. Foam material. Protective clothing for riot policewomen consists of a jacket, guards for arms and legs, upper arm braces, and thigh pads. This study was aimed to develop the base pattern of the jacket to protect the torso and to improve the body suitability and the adaptability to movements of protective clothing for riot policewomen. Since current protective clothing worn by riot policewomen is manufactured with the same design of protective clothing for riot policemen, the body suitability and the adaptability to movements are not very satisfactory for policewomen who has different body structure than from riot policemen. Therefore, the purpose of this study is to reflect the body size and characteristics of riot policewomen and develop the base pattern of protective clothing with better body suitability and adaptability to movements. In this respect, amount and place of dots on the jacket were differently designed, made and evaluated by fitting test. The base with the best evaluation was selected as the final experiment clothing to demonstrate its superiority compared with the existing protective clothing.

  • PDF

Studies on the Fixation of Acetaldehyde by Freeze Drying (냉동건조방법에 의한 Acetaldehyde 고정에 관한 연구)

  • Lee, Young-Chun;Lee, Kyung-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.13-16
    • /
    • 1989
  • Attempts were made to fix acetaldehyde on base materials, which were selected from carbohydrates, by freeze drying. More acetaldehyde was fixed, in general, on combined base materials than single base materials, and mannitol+lactose were the best among the combined base materials tested. But the combination of mannitol and maltodextrin appeared to be more economical for the mass production. Loss of acetaldehyde during freeze drying was decreased as the concentration of the combined base material was increased, and it reached minimum at 40% of the base material. As dryer chamber pressure was reduced, loss of acetaldehyde during drying was decreased.

  • PDF

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.

Tensile Properties of CFRP Rod and U Type Anchor manufactured by UCAS Method (UCAS 공법에 의해서 제작된 CFRP rod와 U형 앵커의 인장특성)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • Important material properties of UCAS rod can divide by tension characteristic of base rod part and both end part of U type anchor. Tensile properties of base rod part need as concrete reinforcement material as an alternative material of reinforcing rod, and tensile properties of U type anchor is used at connection with UCAS rod. This treatise carry out tensile test of UCAS rod, examine necessary properties such as strength, elastic modulus and maximum capacity of UCAS rod as reinforcement material of concrete. Also, to examine material properties carry out tensile test of U type anchor.

  • PDF

A Study on Squeal Noise Simulation considering the Friction Material Property Changes according to Temperature and Pressure in an Automotive Brake Corner Module (차량용 브레이크 코너 모듈에서 마찰재의 온도와 압력에 따른 물성치 변화를 고려한 스퀼 소음 해석 연구)

  • Cho, Hojoon;Kim, Jeong-Tae;Chae, Ho-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.546-552
    • /
    • 2012
  • This paper is a study on squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material. For this, data of pressure and temperature dependent material properties of lining is achieved by using lining data base and exponential curve fit. Complex eigenvalue analysis is performed for predicting squeal noise frequency and instability and chassis dynamo test is performed for achieving squeal noise frequency, sound pressure level, occurrence temperature & pressure. Initial multi models are composed for considering complex interface conditions such as pad ear-clip, piston-housing and guide pin-torque member. The simulation result of base models is compared with the test result. Squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material is performed and analyzed using multi models. And additional condition is disc material property variation. Entire simulation conditions are combined and analyzed. Finally, this paper proposes direction of the warm squeal noise model.

  • PDF

Deposition Characteristics of $TEOS-O_3$ Oxide Film on Substrate (기판 막질에 따른 $TEOS-O_3$ 산화막의 증착 특성)

  • Ahn, Yong-Cheol;Park, In-Seon;Choi, Ji-Hyeon;Chung, U-In;Lee, Jeong-Gyu;Lee, Jeong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.76-82
    • /
    • 1992
  • Deposition of $TEOS-O_3$ oxide film as inter-metal dielectric layer shows the substrate dependency according to the substrate material and pattern density and pitch size. To minimize substrate and Pattern dependency, TEOS-base and $SiH_4-base$ Plasma oxide were predeposited as underlying material on the substrate. The substrate dependency of $TEOS-O_3$ oxide film was more significant on TEOS-base plasma oxide than on $SiH_4-base$ plasma oxide. The dependency of $TEOS-O_3$ oxide film was remarkably reduced, or nearly eliminated, by $N_2$plasma treatment on TEOS-base plasma oxide, which appears to be caused by the O-Si-N structure, observed on the the surface of TEOS-base plasma oxide.

  • PDF

The Bonding Strength Characteristic of the Filler Metal Powder on the TLP Bonded Region of Superalloy GTD-111DS (일방향 초내열합금 GTD-111DS에서 삽입금속 분말에 따른 천이액상확산접합부의 접합강도 특성)

  • Oh, In-Seok;Kim, Gil-Moo;Moon, Byeong-Shik
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.45-50
    • /
    • 2007
  • The Ni-base superalloy GTD111 DS is used in the first stage blade of high power land-based gas turbines. Advanced repair technologies of the blade have been introduced to the gas turbine industry over recent years. The effect of the filler metal powder on Transient Liquid Phase bonding phenomenon and tensile mechanical properties was investigated on the GTD111 DS superalloy. At the filler metal powder N series, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid filler metal powder was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solids in the bonded interlayer grew from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The bond strength of N series filler metal powder was over 1000 MPa. and ${\gamma}'$ phase size of N series TLP bonded region was similar with base metal by influence of Ti, Al elements. At the insert metal powder M series, the Si element fluidity of the filler metal was good but microstructure irregularity on bonded region because of excessive Si element. Nuclear of solids formed not only from the base metal near the bonded interlayer but also from the remained filler metal powder in the bonded interlayer. When the isothermal solidification was finished, the content of the elements in the boned interlayer was approximately equal to that of the base metal. But boride and silicide formed in the base metal near the bonded interlayer. And these boride decreased with the increasing of holding time. The bond strength of M series filler metal powder was about 400 MPa.

A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate (Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구)

  • Kim, In-Ho;Lee, Gil-Young;Ju, Jeong-Min;Park, Kyoung-Tae;Chun, Byong-Sun
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

A Study on the applicability of ultrasonic knife for processing CFRTP materials (CFRTP 소재 가공을 위한 초음파 나이프 적용 가능성에 관한 연구)

  • Ki-Hyeok Song;Hye-Jin Kim;Ji-young Park;Si-Myung Sung
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.9-14
    • /
    • 2023
  • In this study, an experiment was conducted to confirm the applicability of the external shape control of the ultrasonic knife to the CFRTP material, which is the base material of thermoplastic. TC910 based on polyamide6 (PA6) was used as the material. The slope 와 and tool transfer speed of the material and tool were selected as process factors for processing, and the following results were obtained. Under all cutting conditions using an ultrasonic knife, friction heat caused by high-frequency vibration was issued at 150℃ at the contact part between the material and the knife during cutting. As a result of the cutting force analysis, the faster the transfer speed, the higher the cutting force as the angle of entry of the blade increased, and the size of the cutting force changed during cutting. As for the size of the burr in accordance with the transfer speed condition, the smallest burr occurred at 150mm/min in the side part, and the smallest burr occurred at 150mm/min and 200mm/min in the case of the outlet burr. The size of the burr according to the entry angle tended to decrease as the tool entry angle increased, and the side part tended to increase as the tool entry angle increased. As a result of the cutting surface analysis, it was confirmed that the base material was eluted under all conditions, and the faster the transfer speed, the lower the elution phenomenon of the base material. Based on the above results, cutting the CFRTP material with an ultrasonic knife is possible, but the effect on heat generation caused by friction needs to be minimized, and further research needs to be conducted on this.