• Title/Summary/Keyword: Base Stations

Search Result 639, Processing Time 0.021 seconds

Transmission Diversity Scheme Using Antenna Array of Small Cell (소형 기지국의 안테나 배열을 이용한 전송 다이버시티 기법)

  • Paik, Jong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.301-303
    • /
    • 2016
  • This paper proposes a method providing diversity gain using small base stations in a cell coverage in order to improve diversity gain. The small base stations and the conventional base station consist a virtual MIMO array by using the cooperative communication scheme. Also, transmission diversity scheme is applied. A mobile user can receive the signals having the improved reliability by the applied transmission diversity scheme and the cooperative communication scheme.

An Experiment on Performance Evaluation of a Direct Ambient Cooling Air Filter for Wireless Telecommunication Base Transceiver Stations (이동통신 기지국 직접대기냉각용 에어필터의 성능평가실험)

  • Yeo, Kuk-Hyun;Yoo, Kyung-Hoon;Cha, Ho-Jin;Kim, Yong-Woo;Choi, Dong-Kyu;Lee, Henry
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.436-441
    • /
    • 2006
  • In recent European telecommunication base transceiver stations(BTS) a membrane laminated air filter is reported to replace a heat exchanger in order to cool internal digital units of BTS. The concept of using the air filter is for the direct ambient cooling(DAC) of BTSs without heat loss generally found ill the heat exchanger type BTS. In the present study, a performance evaluation experiment was conducted to investigate the pressure drop characteristics with dust loading and the particle collection efficiency of the air filter for the DAC of BTS.

  • PDF

Development of Wireless Base Station Remote Monitoring System Using IoT Based on Cloud Server (클라우드 서버 기반 IoT를 이용한 무선기지국 원격 감시시스템 개발)

  • Lee, Yang-weon;Kim, Chul-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.849-854
    • /
    • 2018
  • Radio base stations, which are widely distributed across large areas, have many difficulties in managing them. Unmanned radio base stations in remote mountains are having a hard time accessing them in case of emergencies. Major telephone service providers only remotely control incoming and outgoing information and local small business partners responsible for maintaining actual facilities do not possess such technologies, so they are each checked during field visits. In this study, in order to process the sensor raw data and smoothing, we apply the particle filters and confirmed that the performance of sensor data accuracy is increased. Integrated system using temperature, humidity, fire condition, and power operation at a wide range of radio base stations under the real-time monitoring status is operated well. It show that all of the status of base station are monitored at the remote office using the cloud server through internet networking.

Research on Positioning technology of Urban Railway underground using mobile base station (이동통신 기지국 기반 도시철도 지하 역사 및 구간 위치 측위 기술 연구)

  • Yoo, Bong-Seok;Kim, Gyu-Ho;Jin, Ju-Hyun;Jang, Ki-Baek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.5
    • /
    • pp.451-458
    • /
    • 2016
  • Urban railway can be divided into ground and underground sections. In particular, the center of the metropolitan has been built mostly underground stations and tunnels. Underground section is difficult to measure the position because GPS signal is unavailable, so it is necessary to apply the indoor positioning technology. For this purpose, we analyzed the positioning technologies which are based on Wi-Fi and mobile base stations. The positing technology for smart phone which uses mobile base station' information is developed in the underground area of urban railway where the core technique is to implement base station ID into the positing technology by considering hand-off point.

A Pseudo-Random Beamforming Technique for Time-Synchronized Mobile Base Stations with GPS Signal

  • Son, Woong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2018
  • This paper proposes a pseudo-random beamforming technique for time-synchronized mobile base stations (BSs) for multi-cell downlink networks which have mobility. The base stations equipped with multi-antennas and mobile stations (MSs) are time-synchronized based on global positioning system (GPS) signals and generate a number of transmit beamforming matrix candidates according to the predetermined pseudo-random pattern. In addition, MSs generate receive beamforming vectors that correspond to the beam index number based on the minimum mean square error (MMSE) using transmit beamforming vectors that make up a number of transmit beamforming matrices and wireless channel matrices from BSs estimated via the reference signals (RS). Afterward, values of received signal-to-interference-plus-noise ratio (SINR) with regard to all transmit beamforming vectors are calculated, and the resulting values are then feedbacked to the BS of the same cells along with the beam index number. Each of the BSs calculates each of the sum-rates of the transmit beamforming matrix candidates based on the feedback information and then transmits the calculated results to the BS coordinator. After this, optimum transmit beamforming matrices, which can maximize a sum-rate of the entire cells, are selected at the BS coordinator and informed to the BSs. Finally, data signals are transmitted using them. The simulation results verified that a sum-rate of the entire cells was improved as the number of transmit beamforming matrix candidates increased. It was also found that if the received SINR values and beam index numbers are feedbacked opportunistically from each of the MSs to the BSs, not only nearly the same performance in sum-rate with that of applying existing feedback techniques could be achieved but also an amount of feedback was significantly reduced.

Downlink Performance Improvement of TDD CDMA Cellular Networks with Time Slot and Fixed Hopping Station Allocations

  • Zhou, Rui;Nguyen, Hoang Nam;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.247-253
    • /
    • 2007
  • In this paper, downlink capacity of time duplex division (TDD) based cellular wireless networks utilizing fixed hopping stations is investigated. In the network, a number of fixed subscriber stations act as hopping transmission stations between base stations and far away subscribers, forming a cellular and ad hoc mobile network model. At the radio layer, TDD code division multiple access (CDMA) is selected as the radio interface due to high efficiency of frequency usage. In order to improve the system performance in terms of downlink capacity, we propose different time slot allocation schemes with the usage of fixed hopping stations, which can be selected by either random or distanced dependent schemes. Performance results obtained by computer simulation demonstrate the effectiveness of the proposed network to improve downlink system capacity.

An Efficient Data Delivery Information Exchange for Reliable Wireless Multicasting (신뢰성 있는 무선 멀티캐스팅을 위한 효율적인 데이터 수신 정보 교환)

  • Lim Ji-Yeong;Chung Tai-Myeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1C
    • /
    • pp.59-68
    • /
    • 2002
  • In this paper we issue some problems occurring when a mobile host moves from a base station to another in a wireless multicasting and propose a solution. In the case of not being in the same multicast group, the old base station will pre-forward data to neighboring base stations to avoid transmission delay. However, if other mobile hosts move at short interval, the old base station may retransmit the same dta to the same neighboring base stations. Also, the old base station should retransmit data if the new base station has already discarded data even if the new base station is a member of the multicast group. In this paper we propose called Information Exchange Scheme (IES). In this scheme, each base station exchanges indirectly the data delivery information with the rest of the base stations in the same multicast group for efficient and reliable multicast and pre-forwards data not retransmitting the same data for minimizing transmission delay when a mobile host moves. We also present how IES is efficient by analyzing and simulating.

Uncoordinated Dynamic Frequency Allocation Schemes based on Cognitive Radio in Mobile Cellular Networks (이동셀룰러망에서 무선 인지 기반 비협력 동적 주파수 자원 할당 기법)

  • Yu, Hyun;Jung, Jun-Woo;Lee, Jong-Kwan;Lim, Jae-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.833-841
    • /
    • 2011
  • In this paper, we propose uncoordinated dynamic frequency(channel) allocation schemes based on cognitive radio in mobile cellular networks(MCNs). Under the assumptions that mobile base stations are equipped with cognitive radio(CR) function and they construct uncoordinated network, the proposed scheme enables the MCNs by suppression of successive channel switching and management of channel allocation in a dynamic and distributed manner. The proposed scheme is composed of two phase processes. In the first phase, highly orthogonal sequences are generated and assigned to mobile base stations. In the second phase, each mobile base station is allocated a channel according to the pre-assigned orthogonal sequences. Simulation results show that the number of successive spectrum switching is reduced significantly compared with the random switching scheme.

Proportionally fair load balancing with statistical quality of service provisioning for aerial base stations

  • Shengqi Jiang;Ying Loong Lee;Mau Luen Tham;Donghong, Qin;Yoong Choon Chang;Allyson Gek Hong Sim
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.887-898
    • /
    • 2023
  • Aerial base stations (ABSs) seem promising to enhance the coverage and capacity of fifth-generation and upcoming networks. With the flexible mobility of ABSs, they can be positioned in air to maximize the number of users served with a guaranteed quality of service (QoS). However, ABSs may be overloaded or underutilized given inefficient placement, and user association has not been well addressed. Hence, we propose a three-dimensional ABS placement scheme with a delay-QoS-driven user association to balance loading among ABSs. First, a load balancing utility function is designed based on proportional fairness. Then, an optimization problem for joint ABS placement and user association is formulated to maximize the utility function subject to statistical delay QoS requirements and ABS collision avoidance constraints. To solve this problem, we introduce an efficient modified gray wolf optimizer for ABS placement with a greedy user association strategy. Simulation results demonstrate that the proposed scheme outperforms baselines in terms of load balancing and delay QoS provisioning.

Sharing Studies between IMT Base Stations and FSS Earth Station in C-band (C-대역에서 IMT 기지국과 FSS 지구국간의 주파수 공유 연구)

  • Kang, Young-Heung;Park, Jong-Min;Oh, Dae-Sub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.366-374
    • /
    • 2009
  • ITU has considered the 3,400$\sim$4,200 MHz band, which is allocated worldwide on a primary basis to the FSS, as a candidate band for future development of IMT system. In this band, this paper presents the results of the sharing studies performed between FSS and IMT systems through the theoretical and simulation analysis on the interference from multiple IMT base stations into a receiving FSS earth station considering the interference mitigation techniques such as antenna tilt angle and 3 sectors on the IMT base station. By using the long-term and short-term interference threshold, the coordination areas for the FSS earth station are provided to share frequency in 3,400$\sim$4,200 MHz band between FSS earth station and multiple IMT base stations in future.