• Title/Summary/Keyword: Base Fluid

Search Result 427, Processing Time 0.026 seconds

Dynamic Analysis of Base-Isolated Rectangular Liquid Storage Structures (기초격리된 직사각형 유체 저장 구조물의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.109-116
    • /
    • 2004
  • The dynamic behavior of the rectangular liquid storage structure is known to be greatly influenced by fluid-structure interaction. By mounting the liquid storage structure on the properly designed base isolators, dynamic response of the superstructure can be reduced. However, base isolators inevitably incur large displacement of the structure to the ground ·ind may give adverse effects on the sloshing height. This paper presents the analysis method for fluid-structure-isolator interaction in base-isolated rectangular liquid storage structures. In the method, the irrotational motion of invicid and incompressible ideal fluid is expressed by analytic solutions and the superstructure and isolators are properly modeled by finite element and bilinear model. Free surface sloshing motion, hydrodynamic pressure acting on the wall and structural response are obtained by the presented method.

Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화)

  • Kang Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.987-995
    • /
    • 2006
  • A reversed trapezoidal fin with the fluid in the inside wall is analyzed and optimized in this study. As a fin base boundary condition, the heat transfer from inside wall fluid to the fin base is considered. The values of fin base temperature with the variations of inside wall fluid convection characteristic number and fin base length are listed. The heat transfer, fin effectiveness, fin length and fin base height are optimized as a function of fin base length, convection characteristic number ratio, fin shape factor and fin volume.

Base Flow with External Combustion (외부연소를 고려한 기저유동)

  • Shin, Jae-Ryul;Choi, Jeoung-Yeoul
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.92-97
    • /
    • 2007
  • Numerical simulations were carried out to investigate the base drag characteristics of a base bleed projectile with a central propulsive jet by considering the base burning process. Overall fluid dynamic process is modeled by Navier-Stokes equations for reacting flows with two-equation $k-{\omega}$ SST turbulence closure. The combustion process is modeled by finite-rate chemistry with a given partially burned exit condition of the BBU (base-bleed unit). Besides the demonstrating the capability of the present CFD solver for the base drag and the interaction of the base flow with a rocket plume, present study gives an insight into the fluid dynamics and the combustion process of the hybrid-propulsion projectile.

  • PDF

A Study On the Application of VHVI Base Oil - Hydraulic Fluid for Construction Equipment (VHVI 기유의 제품 적용 기술에 관한 연구 - 건설 중장비용 유압유)

  • 권완섭;문우식;윤한희;김경웅
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper, show that there is a sharp change in viscosity drop and moderate additive depletion when viscosity index of hydraulic oil is very high. For the extension of hydraulic fluid life, it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Performance of newly developed hydraulic oil based on used oil analysis is compared with previously used one. The properties of new formulation are the viscosity index of 140 and improved thermal stability consists of VHVI base oil. Field test results showed the possibility of extension of fluid life. Additionally, for development of high performance product, new required propertied and performances were discussed.

OPTIMUM PERFORMANCE AND DESIGN OF A RECTANGULAR FIN

  • Kang, H.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.705-711
    • /
    • 2007
  • A rectangular fin with a fluid in the inside wall is analyzed and optimized using a two-dimensional analytical method. The influence of the fluid convection characteristic number in the inside wall and the fin base thickness on the fin base temperature is listed. For the fixed fin volumes, the maximum heat loss and the corresponding optimum fin effectiveness and dimensions as a function of the fin base thickness, convection characteristic numbers ratio, convection characteristic number over the fin, fluid convection characteristic number in the inside wall, and the fin volume are represented. One of the results shows that both the optimum heat loss and the corresponding fin effectiveness increase as the fin base thickness decreases.

Analysis of a Geometrically Asymmetric Trapezoidal Fin with Variable Fin Base Thickness and Height

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.83-88
    • /
    • 2008
  • A geometrically asymmetric trapezoidal fin is analyzed using the one-dimensional analytic method. Heat loss and thermal resistance are represented as a function of the fin base thickness, base height, fm shape factor, inside fluid convection characteristic number, convection characteristic numbers ratio, fm length and ambient convection characteristic number. The relationship between the fin base height and the shape factor for equal amounts of heat loss is presented. One of the results shows that the variations of the fm base thickness and the inside fluid convection characteristic number give no effect on the thermal resistance.

Performance Analysis of a Geometrically Asymmetric Trapezoidal Fin for an Enhanced Heat Exchanger (향상된 열교환기를 위한 기하학적 비대칭 사다리꼴 핀의 성능 해석)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Performance of the asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For a fin base boundary condition, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered. Heat loss and fin efficiency are represented as a function of the fin base thickness, base height, inner fluid convection characteristic number, fin tip length and fin shape factor. One of the results shows that heat loss increases while fin efficiency decreases as the fin shape factor increases.

Base Drag Characteristics with Exothermic Bleed/Jet (발열성 유출류와 제트를 고려한 기저부 저항 특성)

  • Shin J.R.;Choi J.Y.;Kim C.K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.327-330
    • /
    • 2006
  • Numerical simulations were carried out to investigate the base drag characteristics of a base bleed projectile with a central propulsive jet by considering the base homing process. Overall fluid dynamic process is modeled by Wavier-Stokes equations for reacting flows with two-equation $k-\omega$ SST turbulence closure. The combustion process is modeled by finite-rate chemistry with a given partially burned exit condition of the BBU (base-bleed unit). Besides the demonstrating the capability of the present CFD solver for the base drag and the interaction of the base flow with a rocket plume, present study gives an insight into the fluid dynamics and the combustion process of the hybrid-propulsion projectile.

  • PDF

Finite element based total response analysis of rectangular liquid containers against different excitations

  • Kalyan Kumar Mandal
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.57-77
    • /
    • 2023
  • In the present study, the total hydrodynamic pressure exerted by the fluid on walls of rectangular tanks due to horizontal excitations of different frequencies, is investigated by pressure based finite element method. Fluid within the tanks is invisid, compressible and its motion is considered to be irrotational and it is simulated by two dimensional eight-node isoparametric. The walls of the tanks are assumed to be rigid. The total hydrodynamic pressure increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency. However, the hydrodynamic pressure has decreasing trend for the frequency greater than the fundamental frequency. Hydrodynamic pressure at the free surface is independent to the height of fluid. However, the pressure at base and mid height of vertical wall depends on height of fluid. At these two locations, the hydrodynamic pressure decreases with the increase of fluid depth. The depth of undisturbed fluid near the base increases with the increase of depth of fluid when it is excited with fundamental frequency of fluid. The sloshing of fluid with in the tank increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency of liquid. However, this vertical displacement is quite less when the exciting frequency is greater than the fundamental frequency.

Adaptation accuracy and mechanical properties of various denture base resins: a review (다양한 레진 의치상의 적합도와 기계적 특성)

  • Lee, Jung-Hwan;Lee, Chung-Jae;Lee, Hae-Hyoung
    • The Journal of the Korean dental association
    • /
    • v.57 no.12
    • /
    • pp.747-756
    • /
    • 2019
  • This paper reviews the adaptation accuracy and mechanical properties of currently used denture processing systems with base resin materials and introduces the latest research on the development of antimicrobial denture base resins. Poly(methyl methacrylate) has been successfully used as a dental denture base resin material by the compress-molding method and heat polymerization for a long time, but recently, new processing techniques, injection molding-methods or fluid-resin technique are also used for fabricating denture base. However, studies indicated that there was no difference between the injectionmolding and the conventional compression-molding method in terms of adaption accuracy of denture base. The fluid-resin fabrication and one injection-molding systems exhibited better adaptation accuracy than the other processing methods. Resin denture bases in the oral cavity may undergo midline fractures due to flexural fatigue from repeated masticatory loading. For those patients, impact resistant denture base resins are recommended to prevent denture fracture during service. Thermoplastic denture base resins can be helpful for patients suffering from allergic reaction to resin monomers with a soft-fit, however, thermoplastic resins with low stiffness can irritate gum tissues and accelerate abnormal alveolar ridge resorption. Moreover, due to low chemical durability in oral cavity, those should be used for a limited period of time.

  • PDF