• Title/Summary/Keyword: Base Bleed Unit

Search Result 8, Processing Time 0.016 seconds

Base Drag Characteristics with Exothermic Bleed/Jet (발열성 유출류와 제트를 고려한 기저부 저항 특성)

  • Shin J.R.;Choi J.Y.;Kim C.K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.327-330
    • /
    • 2006
  • Numerical simulations were carried out to investigate the base drag characteristics of a base bleed projectile with a central propulsive jet by considering the base homing process. Overall fluid dynamic process is modeled by Wavier-Stokes equations for reacting flows with two-equation $k-\omega$ SST turbulence closure. The combustion process is modeled by finite-rate chemistry with a given partially burned exit condition of the BBU (base-bleed unit). Besides the demonstrating the capability of the present CFD solver for the base drag and the interaction of the base flow with a rocket plume, present study gives an insight into the fluid dynamics and the combustion process of the hybrid-propulsion projectile.

  • PDF

Research on the formulation and Process of Base Bleed Unit for reducing of Curing Time (항력감소제용 추진제의 경화시간 단축을 위한 조성 및 공정 연구)

  • Choi, Young-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.24-32
    • /
    • 2008
  • We made a new propellant formulation to improve the productivity of Base Bleed Unit(aka BBU) by reducing of the curing time. We made an experiment with new propellant formulation such as binder characteristics and manufacturing process. In addition, we already tested several basic characteristics and the final performance of the new propellant. According to the test report, it was not only satisfied with all requirements in the specification, but it also contributed to improve productivity and reduced 53% of the curing time.

Base Flow with External Combustion (외부연소를 고려한 기저유동)

  • Shin, Jae-Ryul;Choi, Jeoung-Yeoul
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.92-97
    • /
    • 2007
  • Numerical simulations were carried out to investigate the base drag characteristics of a base bleed projectile with a central propulsive jet by considering the base burning process. Overall fluid dynamic process is modeled by Navier-Stokes equations for reacting flows with two-equation $k-{\omega}$ SST turbulence closure. The combustion process is modeled by finite-rate chemistry with a given partially burned exit condition of the BBU (base-bleed unit). Besides the demonstrating the capability of the present CFD solver for the base drag and the interaction of the base flow with a rocket plume, present study gives an insight into the fluid dynamics and the combustion process of the hybrid-propulsion projectile.

  • PDF

Study on the Drag Determination for Analyzing Base Bleed Effects (항력감소분석을 위한 항력산출에 대한 연구)

  • Kim, Hanjun;Shin, Kyung-Hoon;Han, Houkseop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2017
  • In this paper, determination method for drag force and drag coefficient from results of firing test is described. The drag force and drag coefficient are determined through inverse operation of 2-dimensional projectile equation of motion. Determination method was verified by comparing analytical drag coefficient with data from flight test. Analysis of drag coefficient and drag reduction was performed with the data of flight test using artillery projectiles with base bleed unit.

Research on the formulation of Base Bleed Unit for the reduction of process lead time (항력감소제 공정 Lead time 단축을 위한 조성개발 연구)

  • Son Hyun-Il;Chae Kyung-Min;Suh Hyuk;Choi Young-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.479-483
    • /
    • 2005
  • BBU is the weapon system for the extension of range through the reduction of base drag in 155mm. It has been mass-produced since 2000. The purpose of this research is productivity increase through the reduction of process lead time. Development process is as follows. First, formulation tests about propellent and liner, Second, spin test and final firing test about end products.

  • PDF

Research on the formulation and process of base bleed unit inhibitor for changing cure agent (항력감소제용 연소방지제의 경화제변경을 위한 조성 및 공정연구)

  • Kim, Jae-Woo;Lee, Dug-Bum;Park, Jong-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.652-655
    • /
    • 2010
  • BBU attached to the 155mm is the weapon system for the extension of range through the reduction of base drag. This research focus on the development of inhibitor formulation changing cure agent from DDI to IPDI. Development process is as follows. First, the formulation test about basic property Second, the study on the application of process. Third, the tests for the quality and aging properties. The test results are satisfied with the all of the requirments. In results, this research is contributed to the stable manufacturing in the instability of supplying of cure agent.

  • PDF

Formulation of Low Burning Rate Propellant for Base Bleed Unit (항력감소제용 저연소속도 추진제 조성연구)

  • 최성한;박상호;황준식;김창기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.22-22
    • /
    • 1998
  • 155mm 탄에 항력감소장치를 부착하여 탄의 비행중에 형성되는 탄저부의 항력(Base drag)을 감소시켜 사거리를 연장한 무기체계가 미국 등을 비롯한 많은 국가에서 실용화되고 있다. 국과연은 이미 155mm 신형 자주포탄에 적용되는 항력감소장치(항력감소제 그레인, Base & Closure, 점화장치)는 개발하여 사거리를 연장(약 35%)한 것으로 보고하고 있다. 본 연구는 추후 실용화가 예상되는 155mm 성능개량형 DPICM탄(미제 M864급)에 적용할 수 있는 항격감소제용 저연소속도 혼합형 추진제 개발을 목표로 하여, 이에 동등한 추진제 특성(기계적성질, 연소특성, 접착력, 발열량 등)을 가지는 추진제, 라이너(Inhibitor)의 조성개발을 실시하였다. 그리고 개발된 혼합형 추진제 조성의 성능(사거리 및 분산도)을 확인하기 위하여 항력감소제용 그레인을 제작, 155mm 성능개량형 DPICM탄에 적용하여 발사시험을 실시하였다.

  • PDF

항력감소제용 저연소속도 추진제 조성 연구(II)

  • 최성한;박상호;황준식;김창기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.19-19
    • /
    • 1999
  • 155mm 탄에 항력감소장치(Base Bleed Unit)를 부착하여 탄의 비행중에 형성되는 탄저부의 항력(Base Drag)을 감소시켜 사거리를 연장하는 무기체계가 미국을 비롯한 많은 국가에서 실용화되고 있다. 국내에서는 국과연 주관사업으로 이미 신형자주포에 적용되는 155mm 탄의 항력감소장치를 개발, 사거리 약 35%를 증가하여 실용화 단계에 있다. 또한 최근에는 미제 M864급인 155mm 성능개량 DPICM(Dual purpose Improved Conventional Munition)탄과 동등 성능을 갖는 탄의 개발이 요구되어, 이의 항력감소제인 저연소속도 추진제를 개발하여 155mm DPICM탄에 적용한 결과 약 20%의 사거리가 증가된 미제와 동등한 성능의 항력감소제를 개발하여, 이를 보고한바 있다.

  • PDF