• Title/Summary/Keyword: Barrier rib-type electronic paper

Search Result 3, Processing Time 0.019 seconds

Analysis on Current Characteristics According to Injection Method and Driving Waveform in Electrophoretic-Type E-Paper Display (전기영동형 전자종이 디스플레이에서 전자잉크의 주입 방법 및 구동파형에 따른 전류 특성 분석)

  • Lee, Joo-Won;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.386-392
    • /
    • 2020
  • In this study, the drift current characteristics of charged particles are analyzed for panels fabricated by varying the waveform biasing of the active particle loading method (APLM), which is a method driven by the electrophoretic principle of loading charged particles into a cell of a barrier rib-type electronic paper. We prepare 3 panels using APLM and 1 panel without APLM. The waveform of APLM uses square wave and ramp wave, and the step voltage wave is applied to the driving voltage. The drift currents measured from the square wave and ramp wave with the same period applied by APLM are 4.872 µC and 5.464 µC, respectively, and the ramp wave is shown to be relatively advantageous for loading charged particles that have a large q/m. The time-current curve results confirm that the abrupt movement of charged particles is occurring. When the step form wave signal with a short time of 1s is first applied, initial large movement of the charged particles is confirmed to occur in all samples, which is understood as the effect of applying the voltage necessary to remove the imaging force. The results of this study are expected to improve the loading of charged particles into the electronic paper cell, driven by the electrophoretic principle and optimization of the driving conditions.

Analysis on Current and Optical Characteristics by Electronic Ink Loading Method in Charged Particles Type Display (대전입자형 디스플레이에서 전자 잉크 주입 방법에 따른 전류 및 광특성 분석)

  • An, Hyeong-Jin;Kim, Young-cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.123-129
    • /
    • 2020
  • We analyzed the drift current by charged particles according to the loading methods applied into a closed cell by electronic ink at a reflective-type display panel using an electrophoretic mechanism. For this experiment, various panels were fabricated with injection voltages for electronic ink taking values in the range -4~0 V. The size of each cell was 220 ㎛ × 220 ㎛ and height of the barrier rib was 54.28 ㎛. The electronic ink was fabricated by mixing electrically neutral fluid and single-charge white particles. Drift current was measured by moving charged particles. A biasing voltage of 6 V was applied to the display panel. As a result, the drift current was proportional to the injection voltage for electronic ink, but it decreased in case of an injection voltage above -3 V. Our experimentation ascertained that the concentration of charged particles injected into closed cells is controlled by the injection voltage and the selective injection of charged particles above movable q/m is possible.

Analysis of Response Time and Reflectivity According to Driving Conditions of Barrier Rib-Type E-Paper Fabricated by Charged Particle Filtering Method (격벽형 전자종이의 하전입자 필터링 방법 및 구동조건에 따른 응답시간 및 반사율 분석)

  • Lee, Joo-Won;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.475-482
    • /
    • 2020
  • For electronic paper displays using electrophoresis, the response time and reflectivity of the image panel fabricated by filtering are analyzed. For the filtering process, a square wave and ramp wave are applied to white charged particles with a unique q/m value. We divide the sample panels into #1 to #4 according to the applied waveform in the filtering process. Step waves comprising two steps are used to drive the panel; therefore, we divide the driving conditions into D1~D4. The applied voltage at the first stage of the half cycle of the driving waveform moves the charged particles attached via the image force from the electrode, and the applied voltage at the second stage moves the floating charged particles by detaching. As mentioned, four types of driving conditions (D1 to D4) classified according to the half cycle of the driving waveform are applied to the samples #1 to #4), which are classified according to four types of filtering process. When driving condition D1 is applied to the four types of sample panels, the rise time of #1 is 1.59s, #2 is 1.706s, #3 is 1.853s, and #4 is 1.235s, resulting in #4 being relatively faster compared with other sample panels, and showing the same trend in other driving conditions. As a result, we confirm that applying the driving condition D1 causes abrupt movement of the white charged particles injected into the cell. When the same driving waveform (D1) is applied to each sample, reflectivities of 32.1% for #1, 31.4% for #2, 27.9% for #3, and 63.4% for #4 are measured. From the experiment, we confirm that the driving condition D1 (1s of 3.5 V, 9s of 3.0 V) and ramp wave #4 in filtering are desirable for good reflectivity and response time. Our research is expected to contribute to the improvement of the filtering process and optimization of the driving waveform.