• Title/Summary/Keyword: Barrier Potential

Search Result 648, Processing Time 0.028 seconds

Poly-Si Cell with Preferential Grain Boundary Etching and ITO Electrode

  • Lim, D.G.;Lee, S.E.;Park, S.H.;Yi, J.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.125-131
    • /
    • 1999
  • This paper deals with a novel structure of poly-Si solar cell. A grain boundary(GB) of poly-Si acts as potential barrier and recombination center for photo-generated carriers. To reduce unwanted side effects at the GB of poly-Si, we employed physical GB removal of poly-Si using chemical solutions. Various chemical etchants such as Sirtl, Yang, Secco, and Schimmel were investigated for the preferential GB etching. Etch depth about 10 ${\mu}m$ was achieved by a Schimmel etchant. After a chemical etching of poly-Si, we used $POCl_3$ for emitter junction formation. This paper used an easy method of top electrode formation using a RF sputter grown ITO film. ITO films with thickness of 300 nm showed resistivity of $1.26{\times}10^{-4}{\Omega}-cm$ and overall transmittance above 80%. Using a preferential GB etching and ITO top electrode, we developed a new fabrication procedure of poly-Si solar cells. Employing optimized process conditions, we were able to achieve conversion efficiency as high as 16.6% at an input power of 20 $mW/cm^2$. This paper investigates the effects of process parameters: etching conditions, ITO deposition factors, and emitter doping densities in a poly-Si cell fabrication procedure.

  • PDF

Engineered biochar from pine wood: Characterization and potential application for removal of sulfamethoxazole in water

  • Jang, Hyun Min;Yoo, Seunghyun;Park, Sunkyu;Kan, Eunsung
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.608-617
    • /
    • 2019
  • The adsorption of sulfamethoxazole (SMX) onto a NaOH-activated pine wood-derived biochar was investigated via batch experiments and models. Surprisingly, the maximum adsorption capacity of activated biochar for SMX (397.29 mg/g) was superior than those of pristine biochars from various feedstock, but comparable to those of commercially available activated carbons. Elovich kinetic and Freundlich isotherm models revealed the best fitted ones for the adsorption of SMX onto the activated biochar indicating chemisorptive interaction occurred on surface of the activated biochar. In addition, the intraparticle diffusion limitation was thought to be the major barrier for the adsorption of SMX on the activated biochar. The main mechanisms for the activated biochar would include hydrophobic, π-π interactions and hydrogen bonding. This was consistent with the changes in physicochemical properties of the activated biochar (e.g., increase in sp2 and surface area, but decrease in the ratios of O/C and H/C).

Invitro antifilarial potential of the leaf extract of Oscimum sanctum on cattle filarial parasite Setaria cervi

  • Waseem, Rizvi;K.C., Singhal;Nakhat, Haider;Anil, Kumar
    • Advances in Traditional Medicine
    • /
    • v.4 no.1
    • /
    • pp.53-59
    • /
    • 2004
  • The effect of aqueous and alcoholic extract of the leaves of Ocimum. sanctum was studied on the spontaneous movements of the whole worm (w.w) preparation and nerve muscle (n.m.) complex of Setaria cervi (S. cervi) and on the survival of microfilariae (m.f.) in vitro. Both the extracts caused inhibition of the spontaneous motility of the w.w. and n.m. complex of S. cervi characterized by initial stimulation followed by reversible paralysis, aqueous extract at a higher concentration showed immediate effect and irreversible paralysis. The concentration required to inhibit the movements of n.m. complex was $1/4^{th}$ for aqueous and $1/3^{rd}$ for alcoholic extract compared to that for the w.w., suggesting a cuticular permeability barrier. On the m.f. the lethal concentration (LC 50 and LC 90) were 35 and 50 ng/ml for aqueous whereas, 60 and 85 ng/ml for alcoholic extracts respectively.

The Ion Transport Phenomena through the Liquid Membrane with Macrocylic Compound (II). Transport of $H^+$Ion through Organic Liquid Membranes Containing Dibenzo-18-crown-6 and Dicyclohexyl-18-crown-6 as Carrier (마크로고리 화합물을 운반체로 하는 액체막을 통한 이온의 운반에 관한 연구 (제2보). 유기액체막 운반체를 통한 수소이온의 운반)

  • Yoon, Chang-Ju;Lee, Shim-Sung;Kim, Young-Hee;Kim, Si-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.170-175
    • /
    • 1984
  • The transport rates of $H^+$ ion by DBC and DCC as carrier molecules through organic liquid membranes were determined at 25$^{\circ}$C. The transport rates depend highly on the dielectric constants of membrane solvents and these results were discussed in terms of Born's potential energy barrier methods. The sizes of anions also affect the transport rates and these results were well explained theoreticlly by extended Born's equation.

  • PDF

Computational Study on the Conformational Characteristics of Calix[4]pyrrole Derivatives

  • Hong, Joo-Yeon;Son, Min-Kyung;Ham, Si-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.423-428
    • /
    • 2009
  • The comparative study of three calix[4]heterocycles (calix[4]pyrrole, calix[4]furan, and calix[4]thiophene) has been theoretically performed by using high-level density functional theory (DFT) at the MPWB1K/6-311G$^{**}$//B3LYP/6- 311G$^{**}$ level. The effect of different hetero-atoms (nitrogen, oxygen, and sulfur) placed in the heterocycles on the conformational flexibility, thermodynamic stability order, cavity sizes, charge distributions, and binding propensities are examined. The thermodynamic stability differences between the conformers are found to be much greater in calix[4]pyrrole compared to those in calix[4]furan and calix[4]thiophene. Relatively larger NH group and higher dipole of a pyrrole ring in calix[4]pyrrole contribute to the higher energy barrier for the conformational conversions and relatively rigid potential energy surface compared to the case of calix[4]furan and calix[4]thiophene. The computational results herein provide theoretical understanding of the conformational flexibility and the thermodynamic nature which can be applied to understand the complexation behavior of the three calix[4]heterocycles.

Geotechnical challenges at waste landfill sites in Japan

  • Katsumi, Takeshi;Inui, Toru;Kamon, Masashi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.172-185
    • /
    • 2009
  • This paper presents case histories and research projects related to geotechnical challenges at waste landfill sites in Japan. Due to the limitation of inland space available to waste disposal, coastal landfills and the associated containment systems are important considerations, particularly for metropolitan areas. Experimental works on heavy metals mobility using a large column to simulate the redox potential at the coastal landfill sites are introduced. After the closure of landfill sites, they are expected to be utilized as new land space, since new space is difficult to find in urban area. In the redevelopment of such closed landfill sites, there are possibilities of environmental risks, such as generation of toxic gas and leachate, differential settlement of the waste layer, damage to the lining system. Whether the pile installation through the clay layer acting as a landfill bottom barrier is environmentally acceptable or not has been a great concern in the redevelopment of closed waste landfill sites in particular coastal landfill sites. An analytical study to evaluate the cost-effective remedial option for a dumped waste site located along a landslide area, where cut-off wall keyed into the aquitard might elevate groundwater level and thus may not be employed, is presented.

  • PDF

Molecular Dynamics Simulations of Nanomemory Element Based on Boron Nitride Nanotube-to-peapod Transition

  • Hwang Ho Jung;Kang Jeong Won;Byun Ki Ryang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.227-232
    • /
    • 2004
  • We investigated a nonvolatile nanomemory element based on boron nitride nanopeapods using molecular dynamics simulations. The studied system was composed of two boron-nitride nanotubes filled Cu electrodes and fully ionized endo-fullerenes. The two boron-nitride nanotubes were placed face to face and the endo-fullerenes came and went between the two boron-nitride nanotubes under alternatively applied force fields. Since the endo-fullerenes encapsulated in the boron-nitride nanotubes hardly escape from the boron-nitride nanotubes, the studied system can be considered to be a nonvolatile memory device. The minimum potential energies of the memory element were found near the fullerenes attached copper electrodes and the activation energy barrier was $3{\cdot}579 eV$. Several switching processes were investigated for external force fields using molecular dynamics simulations. The bit flips were achieved from the external force field of above $3.579 eV/{\AA}$.

Non-thermal plasma technology for abatement of pollutant emission from marine diesel engine

  • Panomsuwan, Gasidit;Rujiravanit, Ratana;Ueno, Tomonaga;Saito, Nagahiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.929-934
    • /
    • 2016
  • Plasma technology has long been regarded as a key essential tool in many industrial and technological sectors. However, the advancement of plasma technology in marine applications has not been fully realized yet. Herein, we present a short overview on the recent trends in utilization of plasma technology for air-pollution treatment in marine diesel exhaust. Four non-thermal plasma system, including electron beam dry scrubber (EBDS), dielectric barrier discharge (DBD), electron beam-microwave (EB-MW) plasma hybrid system, and plasma-catalytic hybrid system, are described with emphasis on their efficiency in removals of $NO_x$ and $SO_x$ gases. Non-thermal plasma has the great potential to be an efficient and environmentally compatible technique in simultaneous removals of $NO_x$ and $SO_x$ gases from the exhaust of marine diesel engine in the future.

Theoretical Study on the Mechanism of the Addition Reaction between Cyclopropenylidene and Formaldehyde

  • Tan, Xiaojun;Li, Zhen;Sun, Qiao;Li, Ping;Wang, Weihua
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1934-1938
    • /
    • 2012
  • The reaction mechanism between cyclopropenylidene and formaldehyde has been systematically investigated employing the MP2/6-311+$G^*$ level of theory to better understand the cyclopropenylidene reactivity with carbonyl compound. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. Energies of all the species are further corrected by the CCSD(T)/6-311+$G^*$ single-point calculations. It was found that one important reaction intermediate (INTa) has been located firstly $via$ a transition state (TSa). After that, the common intermediate (INTb) for the two pathways (1) and (2) has been formed $via$ TSb. At last, two different products possessing three- and four-membered ring characters have been obtained through two possible reaction pathways. In the reaction pathway (1), a three-membered ring alkyne compound has been obtained. As for the reaction pathway (2), it is the formation of the four-membered ring conjugated diene compound. The energy barrier of the ratedetermining step of pathway (1) is lower than that of the pathway (2), and the ultima product of pathway (2) is more stable than that of the pathway (1).

Reaction Dynamics of CH3 + HBr → CH4 + Br at 150-1000 K

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2473-2479
    • /
    • 2013
  • The kinetics of the radical-polar molecule reaction $CH_3+HBr{\rightarrow}CH_4+Br$ has been studied at temperatures between 150 and 1000 K using classical dynamics procedures. Potential energy surfaces constructed using analytical forms of inter- and intramolecular interaction energies show a shallow well and barrier in the entrance channel, which affect the collision dynamics at low temperatures. Different collision models are used to distinguish the reaction occurring at low- and high-temperature regions. The reaction proceeds rapidly via a complex-mode mechanism below room temperature showing strong negative temperature dependence, where the effects of molecular attraction, H-atom tunneling and recrossing of collision complexes are found to be important. The temperature dependence of the rate constant between 400 and 1000 K is positive, the values increasing in accordance with the increase of the mean speed of collision. The rate constant varies from $7.6{\times}10^{-12}$ at 150 K to $3.7{\times}10^{-12}$ at 1000 K via a minimum value of $2.5{\times}10^{-12}\;cm^3\;molecule^{-1}\;s^{-1}$ at 400 K.