• Title/Summary/Keyword: Barley yellow mosaic virus

Search Result 55, Processing Time 0.021 seconds

The Incidence and Distribution of Viral Diseases in Barley Fields in Korea (국내 맥류재배지의 바이러스병 발생과 분포)

  • Park, Jong-Chul;Seo, Jae-Hwan;Choi, Min-Kyung;Lee, Kui-Jae;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.10 no.3
    • /
    • pp.188-193
    • /
    • 2004
  • The symptom expressions such as yellowish and mosaic spots in overwintering barley have been considered to be a damage by cold or water. However, it had revealed that the symptom expressions were caused by viruses throughout three year nationwide surveys. Barley yellow mosaic virus (BaYMV), Barley mild mosaic virus (BaMMV), and Soil-borne wheat mosaic virus (SBWMV) was detected in 2001-2003 and Barley yellow dwarf virus-MA V (BYDV -MA V) from field samples collected on March in 2003. The results of investigation showed that the incidence of BaYMV was more than 70% and that of BaMMV and SBWMV was 15.7-37.4% and 0.7-10.1 % in three year surveys, respectively. The incidence of BYDV-MAV was approximately 1 % in 2003 only. The distribution of BaYMV was relatively uniform throughout barley fields in Korea, but the incidence of the virus in Gyunggi Province was as low as 19% compared to 65-85% in the rest of regions. On the other hand, 70% of BaMMV was found to be in the west south regions of Korea, Jeonbuk and Jeonnam Provinces. Taken together, both BaYMV and BaMMV were thought to be dominant casual agents in overwintering barley by either single or mixed infections. Previous survey data for BaYMV from 1994 to 1996 indicated that the incidence of the virus was approximately 40% in Jeonbuk, Jeonnam, and Gyungnam Provinces. Thus, comparing with the results from the recent nationwide survey, the incidence of BaYMV had been rapidly increasing in overwintering barley fields in the southern part of Korea.

Occurrence of Viral Diseases in Barley Fields and Responses of Resistant Genes to BaYMV-Ik and BaMMV (맥류 바이러스병 발생 현황 및 BaYMV-Ik와 BnMMV에 대한 저항성 유전자의 반응)

  • Park Jong-Chul;Seo Jae-Hwan;Kim Yang-Kil;Kim Jung-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.197-204
    • /
    • 2005
  • The major symptom such as yellowish and mosaic spots in overwintering barley were mostly caused by viruses such as Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) in the nation-wide for four years. The result showed that more than $78\%$ collected samples were infected by the viruses. The incidence of Ba YMV was more than $70\%$, and relatively uniformly distributed in the southern regions of barley fields in Korea. However the incidence of BaYMV in Gyeonggi Province was as low as $19\%$ compared to $65\~85\%$ in the rest of regions. Occurrence of BaMMV varied depending on investigated regions such as $20\~40\%$ in Jeonbuk, Jeonnam, Gangwon and Gyeongnam, and a lower infection in Gyeongbuk, Chungnam and Gyeonggi Provinces. In this result, $60\%$ of BaMMV was found to be in the southwest regions of Korea such as Jeonbuk and Jeonnam Provinces. Over all, both BaYMV and BaMMV were thought to be dominantly casual agents in overwintering barley by either solely or mixed infections. Soil-borne wheat mosaic virus(SBWMV) occurred at most $14\%$ in Gyeonggi and Barley yellow dwarf virus-MAY (BYDV­MAV) was found only one place in Jeonbuk, suggesting that SBWMV and BYDV-MAV were not significant diseases in Korea. Exotic genetic resources that possess different resistant genes to BaYMV and BaMMV were tested to identify the responses to the viruses occurred in Iksan. According to the ELISA results, BaYMV and BaMMV were infected in some plant materials but SBWMV was not identified. Any resistant gene was not effective to BaYMV-Ik (Insan strain) and BaMMY. Ishukushirazu (rym 3) and Chosen (rym 3), Tokushima Mochi Hadaka (rym 4y) and Hakei 1-41 (rym 5a) showed resistant response with little symptoms to BaYMY. The other five accessions possessing rym 1+5, rym 2, rym 4m, rym 5 and rym 9, respectively, were resistant to BaMMV. Various symptoms were observed in the tested plant materials such as not only yellowish and mosaic symptoms mostly but also necrotic spot, tissue necrosis, leaf stripe and leaf curling. However, it was difficult to find any relationship between resistant genes and specific symptoms.

Detection and Distribution of Fungal Vector P. graminis of BaYMV (보리누른모자이크병 매개곰팡이(Polymyxa graminis) 검정 및 분포현황)

  • Lee, Bong-Choon;Kim, Sang-Min;Bae, Ju-Young;Ra, Ji-Eun;Kim, Sun-Lim;Kim, Kang-Min;Lee, Joon-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.427-433
    • /
    • 2016
  • Barley yellow mosaic virus (BaYMV) is transmitted by a root-inhabiting Polymyxa graminis (P. graminis) and thus the disease is called "soil-borne". In this study, the presence of P. graminis was confirmed by PCR test based on specific sequences of P. graminis type I (P. graminis f. sp. temperata) Internal Transcribed Spacer (ITS). P. graminis was detected in the BaYMV infected soil and root of barley plants. The monitoring of P. graminis was conducted in March 2015 in 8 korean provinces. It was detected in the soil of all collected regions. This is the first report on a P. graminis a survey of Korea.

Comparison and Sequence Analysis of the 3` - terminal Regions of RNA 1 of Barley Yellow Mosaic Virus

  • Lee, Kui-Jae
    • Plant Resources
    • /
    • v.1 no.2
    • /
    • pp.92-97
    • /
    • 1998
  • An isolate of barley yellow mosaic virus(BaYMV-HN) obtained from Haenam, Korea was compared with two BaYMV strains. BaYMV-Ⅱ-1 from Japan and BaYMV-G from Germany. The sequence of the 3'-terminal 3817nucleotides[excluding the poly (A) tail] of RNA 1 of BaYMV-HN was determined to start within a long open reading frame coding for a part of the NIa-VPg polymerase(26 amino acids). NIa-Pro polymerase (343 amino acids), NIb polymerase(528 amino acids) and the entire capsid protein(297 amino acids), which is followed by a noncoding region(NCR) of 235 nucelotides. In the partial ORFs, BaYMV-HN shows higher sequence homology with BaYMV-Ⅱ-1(99.5%) than BaYMV-G(92.7%). The 3' non-coding regions of BaYMV-HN(235nt) shows higher nucleotide sequence homology with BaYMV-G(235nt)(99.6%) than BaYMV-Ⅱ-1(231nt)(97.0%). The 3' NIa-Pro protein sequence of BaYMV-HN shows higher amino acid sequence homology with BaYMV-Ⅱ-1(95.0%) than BaYMV-G(93.6%), but, NIb protein sequence of BaYMV-HN shows same all amino acid sequence. The capsid protein sequence of BaYMV-HN(297aa) shows same with BaYMV-Ⅱ-1, and shows higher nucleotide sequence homology with BaYMV-UK (from United Kingdom)(97.3%) than BaYMV-G(96.9%) and G2(96.9%). Difference of capsid protein amino acid were 0-9 between the Japan, United Kingdom and Germany and were 2-6 between all Korean isolates. Many of the amino acid differences are located in the N-terminal regions of the capsid proteins from 1 to 74 amino acid positions.

  • PDF

Induction of Systemic Resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1

  • Elsharkawy, Mohsen Mohamed;Shimizu, Masafumi;Takahashi, Hideki;Ozaki, Kouichi;Hyakumachi, Mitsuro
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.193-200
    • /
    • 2013
  • Trichoderma asperellum SKT-1 is a microbial pesticide that is very effective against various diseases. Our study was undertaken to evaluate T. asperellum SKT-1 for induction of resistance against yellow strain of Cucumber mosaic virus (CMV-Y) in Arabidopsis plants. Disease severity was rated at 2 weeks post inoculation (WPI). CMV titre in Arabidopsis leaves was determined by indirect enzyme-linked immunosorbent assay (ELISA) at 2 WPI. Our results demonstrated that among all Arabidopsis plants treated with barley grain inoculum (BGI) of SKT-1 NahG and npr1 plants showed no significant reduction in disease severity and CMV titre as compared with control plants. In contrast, disease severity and CMV titre were significantly reduced in all Arabidopsis plants treated with culture filtrate (CF) of SKT-1 as compared with control plants. RT-PCR results showed increased expression levels of SA-inducible genes, but not JA/ET-inducible genes, in leaves of BGI treated plants. Moreover, expression levels of SA- and JA/ET-inducible genes were increased in leaves of CF treated plants. In conclusion, BGI treatment induced systemic resistance against CMV through SA signaling cascade in Arabidopsis plants. While, treatment with CF of SKT-1 mediated the expression of a majority of the various pathogen related genes, which led to the increased defense mechanism against CMV infection.