DOI QR코드

DOI QR Code

Induction of Systemic Resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1

  • Elsharkawy, Mohsen Mohamed (United Graduate School of Agriculture Science, Gifu University, Department of Agricultural Botany, Faculty of Agriculture, Kafr El-Sheikh University) ;
  • Shimizu, Masafumi (Laboratory of Plant Pathology, Faculty of Applied Biological Sciences, Gifu University) ;
  • Takahashi, Hideki (Department of Life Science, Graduate School of Agricultural Science, Tohoku University) ;
  • Ozaki, Kouichi (Life Science Research Institute, Kumiai Chemical Industry Co., Ltd.) ;
  • Hyakumachi, Mitsuro (Laboratory of Plant Pathology, Faculty of Applied Biological Sciences, Gifu University)
  • Received : 2012.07.26
  • Accepted : 2013.01.22
  • Published : 2013.06.01

Abstract

Trichoderma asperellum SKT-1 is a microbial pesticide that is very effective against various diseases. Our study was undertaken to evaluate T. asperellum SKT-1 for induction of resistance against yellow strain of Cucumber mosaic virus (CMV-Y) in Arabidopsis plants. Disease severity was rated at 2 weeks post inoculation (WPI). CMV titre in Arabidopsis leaves was determined by indirect enzyme-linked immunosorbent assay (ELISA) at 2 WPI. Our results demonstrated that among all Arabidopsis plants treated with barley grain inoculum (BGI) of SKT-1 NahG and npr1 plants showed no significant reduction in disease severity and CMV titre as compared with control plants. In contrast, disease severity and CMV titre were significantly reduced in all Arabidopsis plants treated with culture filtrate (CF) of SKT-1 as compared with control plants. RT-PCR results showed increased expression levels of SA-inducible genes, but not JA/ET-inducible genes, in leaves of BGI treated plants. Moreover, expression levels of SA- and JA/ET-inducible genes were increased in leaves of CF treated plants. In conclusion, BGI treatment induced systemic resistance against CMV through SA signaling cascade in Arabidopsis plants. While, treatment with CF of SKT-1 mediated the expression of a majority of the various pathogen related genes, which led to the increased defense mechanism against CMV infection.

Keywords

References

  1. Beauchamp, C. J., Charest, M. H. and Gosselin, A. 2002. Examination of environmental quality of raw and composting deinking paper sludge. Chemosphere 46:887-895. https://doi.org/10.1016/S0045-6535(01)00134-5
  2. Beck, A. J., Johnson, D. L. and Jones, K. C. 1996. The form and bioavailability of non-ionic organic chemicals in sewage sludgeamended agricultural soils. Sci. Total Environ. 185: 125-149. https://doi.org/10.1016/0048-9697(96)05047-4
  3. Bellamy, K. L., Chong, C. and Cline, R. A. 1995. Paper sludge utilization in agricultural and container nursery culture. J. Environ. Qual. 24:1074-1082.
  4. Cao, H., Bowling, S. A., Gordon, A. S. and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583-1592. https://doi.org/10.1105/tpc.6.11.1583
  5. Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W. and Ecker, J. R. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENEINSENSITIVE3 and related proteins. Cell 89:1133-1144. https://doi.org/10.1016/S0092-8674(00)80300-1
  6. Conejero, V., Picazo, I. and Segado, P. 1979. Citrus exocortis viroid (CEV): Protein alterations in different hosts following viroid infection. Virology 97:454-456. https://doi.org/10.1016/0042-6822(79)90355-6
  7. Contreras-Cornejo, H. A., Macías-Rodriguez, L., Cortes-Penagos, C. and Lopez-Bucio, J. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149:1579-1592. https://doi.org/10.1104/pp.108.130369
  8. Conrath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F. et al. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071. https://doi.org/10.1094/MPMI-19-1062
  9. De Meyer, G., Bigirimana, J., Elad, Y. and Höfte, M. 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant. Pathol. 104:279-286. https://doi.org/10.1023/A:1008628806616
  10. Dubey, V. K., Aminuddin and Singh, V. P. 2010. Molecular characterization of Cucumber mosaic virus infecting Gladiolus, revealing its phylogeny distinct from the Indian isolate and alike the Fny strain of CMV. Virus Genes 41:126-134. https://doi.org/10.1007/s11262-010-0483-6
  11. Durrant, W. E. and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185-209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
  12. Elsharkawy, M. M., Shimizu, M., Takahashi, H. and Hyakumachi, M. 2012a. Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol. 61:964-976. https://doi.org/10.1111/j.1365-3059.2011.02573.x
  13. Elsharkawy, M. M., Shimizu, M., Takahashi, H. and Hyakumachi, M. 2012b. The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant Soil 361:397−409.
  14. Fujiwara, T., Hirai, M. Y., Chino, M., Komeda, Y. and Naito, S. 1992. Effects of sulphur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol. 99:263-268. https://doi.org/10.1104/pp.99.1.263
  15. Gianinazi, S., Ahl, P., Cornu, A., Scalla, R. and Cassini, R. 1980. First report of host P. protein appearance in response to fungal infection in tobacco. Physiol. Plant Pathol. 16:337-342. https://doi.org/10.1016/S0048-4059(80)80005-1
  16. Govindasamy, V. and Balasubramanian, R. 1989. Biological control of groundnut rust, Puccinia arachidis, by Trichoderma harzianum. J. Plant Dis. Prot. 96:337-345.
  17. Harman, G. E., Howell, C. R. Viterbo, A., Chet, I. and Lorito. M. 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Rev. Microbiol. 2:43-56. https://doi.org/10.1038/nrmicro797
  18. Heil, M. and Bostock, R. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Ann. Bot. 89:503-512. https://doi.org/10.1093/aob/mcf076
  19. Heiljord, L. G. and Tronsmo, A. 2003. Effect of germination initiation on competitive capacity of Trichoderma atroviride P1 conidia. Phytopathology 93:1593-1598. https://doi.org/10.1094/PHYTO.2003.93.12.1593
  20. Hoffmann, M. H. 2002. Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J. Biogeogr. 29:125-134. https://doi.org/10.1046/j.1365-2699.2002.00647.x
  21. Hossain, M. M., Sultana, F., Kubota, M., Koyama, H. and Hyakumachi, M. 2007. The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol. 48:1724-1736. https://doi.org/10.1093/pcp/pcm144
  22. Jones, A. M., Ecker, J. R. and Chen, J.-G. 2003. A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol. 131:1623-1627. https://doi.org/10.1104/pp.102.017624
  23. Knoester, M., Pieterse, C. M. J., Bol, J. F. and van Loon, L. C. 1999. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol. Plant-Microbe Interact. 12:720-727. https://doi.org/10.1094/MPMI.1999.12.8.720
  24. Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S. and Doke, N. 2001. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignication and superoxide generation. Eur. J. Plant Pathol. 107: 523-533. https://doi.org/10.1023/A:1011203826805
  25. Kovach, J., Petzoldt, R. and Harman, G. E. 2000. Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to strawberry for Botrytis control. Biol. Control 18:235-242. https://doi.org/10.1006/bcon.2000.0839
  26. Kumakura, K.,Watanabe, S., Toyoshima, J., Makino, T., Iyozumi, H., Ichikawa, T., et al. 2003. Effectof Trichoderma sp. SKT-1on suppression of sixdifferent seedborne diseases of rice. Jpn. J. Phytopathol. 69:384-392. https://doi.org/10.3186/jjphytopath.69.384
  27. Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T. and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10:71-82. https://doi.org/10.1046/j.1365-313X.1996.10010071.x
  28. Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S. and Ryals, J. 1995. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol. Plant-Microbe Interact. 8:863-870. https://doi.org/10.1094/MPMI-8-0863
  29. van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic acquired resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483. https://doi.org/10.1146/annurev.phyto.36.1.453
  30. van Loon, L. C., Geraats, B. P. J. and Linthorst, H. J. M. 2006. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 11:184-191. https://doi.org/10.1016/j.tplants.2006.02.005
  31. Malamy, J., Carr, J. P., Klessig, D. F. and Raskin, I. 1990. Salicylic acid a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002-1004. https://doi.org/10.1126/science.250.4983.1002
  32. Mayers, C. N., Lee, K. C., Moore, C. A., Wong, S. M. and Carr, J. P. 2005. Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Mol. Plant-Microbe Interact. 18:428-434. https://doi.org/10.1094/MPMI-18-0428
  33. Metraux, J. P. and Boller, T. 1986. Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections. Physiol. Mol. Plant Pathol. 28:161-169. https://doi.org/10.1016/S0048-4059(86)80060-1
  34. Meera, M. S., Shivanna, M. B., Kageyama, K. and Hyakumachi, M. 1994. Plant growth promoting fungi from zoysiagrass rhizosphere as potential inducers of systemic resistance in cucumbers. Phytopathology 84:1399-1406. https://doi.org/10.1094/Phyto-84-1399
  35. Meera, M. S., Shivanna, M. B., Kageyama, K. and Hyakumachi, M. 1995. Persistence of induced systemic resistance in cucumber in relation to root colonization by plant growth promoting fungal isolates. Crop Prot. 14:123-130. https://doi.org/10.1016/0261-2194(95)92866-L
  36. Oñate-Sánchez, L. and Singh, B. K. 2002. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol. 128:1313-1322. https://doi.org/10.1104/pp.010862
  37. Palukaitis, P. and García-Arenal, F. 2003. Cucumoviruses. Adv. Virus Res. 62:242-323.
  38. Palukaitis, P., Roossinck, M. J., Dietzgen, R. G. and Francki, F. I. B. 1992. Cucumber mosaic virus. Adv. Virus Res. 41:281-348. https://doi.org/10.1016/S0065-3527(08)60039-1
  39. Penninckx, I. A. M. A., Eggermont, K., Terras, F. R. G., Thomma, B. P. H. J., De Samblanx, G. W., Buchala, A., Métraux, J.-P., Manners, J. M. and Broekaert, W. F. 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309-2323. https://doi.org/10.1105/tpc.8.12.2309
  40. Pieterse, C. M. J., van Wees, S. C. M., Hoffland, E., van Pelt, J. A. and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237. https://doi.org/10.1105/tpc.8.8.1225
  41. Pieterse, C. M. J., van Wees, S. C. M., van Pelt, J. A., Knoester, M. L. R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580. https://doi.org/10.1105/tpc.10.9.1571
  42. Robert-Seilaniantz, A., Navarro, L., Bari, R. and Jones, J. D. 2007. Pathological hormone imbalances. Curr. Opin. Plant Biol. 10:372-379. https://doi.org/10.1016/j.pbi.2007.06.003
  43. Ryals, J., Neuenschwander, U., Willits, M., Molina, A., Steiner, H. Y. and Hunt, M. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819. https://doi.org/10.1105/tpc.8.10.1809
  44. Ryu, C.-M., Murphy, J. F., Mysore, K. S. and Kloepper, J. W., 2004. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic aciddependent signaling pathway. Plant J. 39:381-392. https://doi.org/10.1111/j.1365-313X.2004.02142.x
  45. Staswick, P. E., Su, W. and Howell, H. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. USA 89:6837-6840. https://doi.org/10.1073/pnas.89.15.6837
  46. Suzuki, Y., Kawazu, T. and Koyama, H. 2004. RNA isolation from siliques, dry seeds and other tissues of Arabidopsis thaliana. Biotechniques 37:542-544.
  47. Tomlinson, J. A. 1987. Epidemiology and control of virus diseases of vegetables. Ann. Appl. Biol. 110:661-681. https://doi.org/10.1111/j.1744-7348.1987.tb04187.x
  48. Tucci, M., Ruocco, M., De Masi, L., De Palma, M. and Lorito, M. 2011. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol. Plant Pathol. 12:341-354. https://doi.org/10.1111/j.1364-3703.2010.00674.x
  49. Woo, S. L., Scala, F., Ruocco, M. and Lorito, M. 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96: 181-185. https://doi.org/10.1094/PHYTO-96-0181
  50. Yan, Z., Reddy, M. S., Ryu, C. M., McInroy, J. A., Wilson, M. and Kloepper, J. W. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329-1333. https://doi.org/10.1094/PHYTO.2002.92.12.1329
  51. Yedidia, I., Benhamou, N. and Chet, I. 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 65:1061-1070.
  52. Yoshioka, Y., Ichikawa, H., Naznin, H. A., Kogure, A. and Hyakumachi, M. 2011. Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag. Sci. 68:60-6 http://dx.doi.org/10.1002/ps.2220
  53. Zehnder, G. W., Yao, C., Murphy, J. F., Sikora, E. R. and Kloepper, J. W. 2000. Induction of resistance in tomato against Cucumber mosaic cucumovirus by plant growth promoting rhizobacteria. BioControl 45:127-137. https://doi.org/10.1023/A:1009923702103

Cited by

  1. Control ofBean common mosaic virusby plant extracts in bean plants vol.61, pp.1, 2015, https://doi.org/10.1080/09670874.2014.990947
  2. Suppressive effects of a polymer sodium silicate solution on powdery mildew and root rot diseases of miniature rose vol.14, pp.42, 2015, https://doi.org/10.5897/AJB2015.14649
  3. The Constitutive Endopolygalacturonase TvPG2 Regulates the Induction of Plant Systemic Resistance by Trichoderma virens vol.107, pp.5, 2017, https://doi.org/10.1094/PHYTO-03-16-0139-R
  4. Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV) vol.60, pp.1, 2015, https://doi.org/10.1007/s10526-014-9626-3
  5. Induced resistance during the interaction pathogen x plant and the use of resistance inducers vol.15, 2016, https://doi.org/10.1016/j.phytol.2015.12.011
  6. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0168850
  7. Induction of systemic resistance against Fusarium crown and root rot disease by blast processing vol.10, pp.1, 2015, https://doi.org/10.1080/17429145.2015.1066038
  8. Different mechanisms of Trichoderma virens -mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways 2017, https://doi.org/10.1111/mpp.12571
  9. Induction of systemic resistance againstPapaya ring spot virus(PRSV) and its vectorMyzus persicaebyPenicillium simplicissimumGP17-2 and silica (Sio2) nanopowder vol.61, pp.4, 2015, https://doi.org/10.1080/09670874.2015.1070930
  10. Suppression of rice blast, cabbage black leaf spot, and tomato bacterial wilt diseases byMeyerozyma guilliermondiiTA-2 and the nature of protection vol.65, pp.7, 2015, https://doi.org/10.1080/09064710.2015.1039055
  11. Induced Systemic Resistance in Two Genotypes of <i>Brassica napus</i> (AACC) and <i>Raphanus oleracea</i> (RRCC) by <i>Trichoderma</i> Isolates against <i>Sclerotinia sclerotiorum</i> vol.06, pp.10, 2015, https://doi.org/10.4236/ajps.2015.610166
  12. Recent studies on biological control of plant diseases in Japan vol.80, pp.4, 2014, https://doi.org/10.1007/s10327-014-0524-4
  13. Control of tomato bacterial wilt and root-knot diseases byBacillus thuringiensisCR-371 andStreptomyces avermectiniusNBRC14893 vol.65, pp.6, 2015, https://doi.org/10.1080/09064710.2015.1031819
  14. Effect of zoysiagrass rhizosphere fungal isolates on disease suppression and growth promotion of rice seedlings vol.64, pp.2, 2014, https://doi.org/10.1080/09064710.2014.888470
  15. Integrated control of rice kernel smut disease using plant extracts and salicylic acid vol.48, pp.8, 2015, https://doi.org/10.1080/03235408.2015.1092202
  16. Elevated expression of hydrolases, oxidase, and lyase in susceptible and resistant cucumber cultivars systemically induced with plant growth-promoting fungi against anthracnose vol.64, pp.2, 2014, https://doi.org/10.1080/09064710.2014.898783
  17. Mechanism of induced systemic resistance against anthracnose disease in cucumber by plant growth-promoting fungi vol.65, pp.4, 2015, https://doi.org/10.1080/09064710.2014.1003248
  18. Systemic resistance induced by Phoma sp. GS8-3 and nanosilica against Cucumber mosaic virus pp.1614-7499, 2018, https://doi.org/10.1007/s11356-018-3321-3
  19. pp.1526498X, 2018, https://doi.org/10.1002/ps.5193
  20. Streptomyces pactum Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities vol.55, pp.2, 2019, https://doi.org/10.1007/s00374-019-01339-w