• Title/Summary/Keyword: Barley Yellow Mosaic Virus

Search Result 55, Processing Time 0.025 seconds

Evaluation and Verification of Barley Genotypes with Known Genes for Resistance to Barley yellow mosaic virus and Barley mild mosaic virus Under Field Conditions in South Korea

  • Kim, Hong-Sik;Baek, Seong-Bum;Kim, Dea-Wook;Hwang, Jong-Jin;Kim, Si-Ju
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.324-332
    • /
    • 2011
  • Soil-borne barley yellow mosaic disease caused by Barley yellow mosaic virus (BaYMV) or Barley mild mosaic virus (BaMMV) gives a serious threat to the winter barley cultivated in the southern regions in Korea. It is important to develop resistant varieties for stable and high-yield production. The objectives of this study were to evaluate 22 genotypes of exotic barley germplasms carrying the resistance genes rym1 through rym12, with the exception of rym10, and to determine the genes that confer resistance to BaYMV or BaMMV in Korea. Using the traditional visual scoring of symptoms at 4 locations over 3 years, average disease rate values differed (P < 0.001) among the genotypes. ELISA test revealed the presence of both BaYMV and BaMMV in all of the field sites but Jinju and significantly different rates of infection among genotypes and years. Barley genotypes differed in how virus quantities and pathogen-induced symptoms were correlated, especially in response to BaYMV. Disease incidence was affected by the climatic conditions present during the early growing stage before overwintering. A Chinese landrace, 'Mokusekko 3', carrying rym1 and rym5 was comparatively resistant at all locations studied. The barley genotypes carrying either rym6 or rym9 were susceptible to the viral strains. The genotypes carrying rym5 were resistant in Jinju and Milyang but susceptible in Iksan and Naju. The resistance genes rym2 and rym3 were effective in local strains and would be potent contributors to disease resistance.

Analysis and Detection of Coast Protein Gene of Barley Yellow Mosaic Virus and Barley Mield Mosaic Virus by RT-PCR (RP-PCR을 이용한 보리누른모자이크바이러스 (BaYMV)와 보리마일드모자이크바이러스(BaMMV)의 외피단백질 유전자 검정 및 해석)

  • 이귀재
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.314-318
    • /
    • 1998
  • Using the reverse transcription polymerase chain reaction (RT-PCR), a rapid and sensitive assay method for the detection and identification of barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) was adapted. Two units of primers from each virus were selected and used for the determination of two different viruses. PCR fragments of BaYMV (ca. 0.9kb) and BaMMV (ca. 0.8kb) were obtained from the designed method for the assay of BaYMV and BaMMV coat protein. PT-PCR fragments were cloned using vector pT7 Blue and the sequences of the selected clones were analyzed. coat protein of BaYMV and that of BaMMV consisted of 297 amino acids (891 nucleotides) and 251 amino acids (753 nucleotides), respectively. The snalysis of coat protein genes from these two viruses showed that 45.6% of nucleotides sequence ad 34.9% of amino acid in BaYMV were homologous to those in BaMMV.

  • PDF

Distribution and Screening for Barley Cultivars Resistance to Barley Yellow Mosaic Virus and Barley Mild Mosaic Virus in Southern Korea (남부지방에 발생하는 보리호위축바이러스(BaYMV) 및 보리마일드모자이크바이러스(BaMMV)의 분포와 저항성품종 선발)

  • 소인영;이귀재;전길형;서재환
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.118-124
    • /
    • 1997
  • The two viruses of barley yellow mosaic(BaYMV) and barley mild mosaic virus (BaMMV) were detected by ELISA from barley plants with virus-like symptoms which were collected from 16 locations in southern Korea, during 1995 and 1996. Both viruses occurred in southern Korea. Barley plants at Chongdo and Koseong were infected with BaMMV, while those infected with BaYMV were at Kurye and Taegu. After sowing 50 barley cultivars at habitually infected fields in 10 locations, the susceptibility and resistance to BaYMV and BaMMV were screened with antiserum tests. The cultivars of Albori, Alchanbori, Daejinbori, Jokangbori, Milyangbori, Boeunkwamek, Naehanssalbori, Olssalbori, Weossalbori, Dusan 29 and Deogndohyangchonkwa showed positive reaction to BaYMV antiserum, while Saeolbori, Chalbori, Jinjukwa and Baegjinkwa showed positive reaction to BaMMV. Nonsankwa 1-6 and wheat cultivars of Chongkeymil, Dahongmil, Grumil, Urimil, Jochonhomil, Sinkeyhomil showed negative reactions to both viruses. The rest cultivars were infected both with BaYMV and BaMMV. Sap inoculations to barleyplants with the two viruses of BaYMV isolated in Haenam and BaMMV isolated at National Honam Agricultural Station, expressed lower infection rate than those grown in the virus-infected fields.

  • PDF

Detection of Barley yellow mosaic virus from Soil Using Nested PCR (Nested PCR 기법을 이용한 토양으로부터 Barley yellow mosaic virus 검출)

  • Lee, Joong-Hwan;Son, Chang-Gi;Kwon, Joong-Bae;Nam, Hyo-Hun;Kim, Yeong-Tae;Lee, Bong-Choon;Shin, Dong-Bum
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.65-68
    • /
    • 2017
  • Barley yellow mosaic virus (BaYMV), which is transmitted by the root-inhabiting protist Polymyxa graminis, causes a soil-borne disease. In this study, we detected BaYMV from soil using two-step nested polymerase chain reaction (PCR). Specific primers based on a coat protein region of BaYMV segment RNA1 were used in the first round of amplification. Based on the sequenced amplicon, an inner primer was designed for the second round of amplification. A PCR product of 372 bp exhibited 98%-100% nucleotide sequence identity with the coat protein region of BaYMV segment RNA1. In this study, we propose an easy method for the detection of BaYMV from soil, may considerably assist in accurate fungus-transmitted virus diagnosis and subsequent disease forecasting. This is the first report on the detection of BaYMV from soil.

Rapid and Visual Detection of Barley Yellow Dwarf Virus by Reverse Transcription Recombinase Polymerase Amplification with Lateral Flow Strips

  • Kim, Na-Kyeong;Lee, Hyo-Jeong;Kim, Sang-Min;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.159-166
    • /
    • 2022
  • Barley yellow dwarf virus (BYDV) has been a major viral pathogen causing significant losses of cereal crops including oats worldwide. It spreads naturally through aphids, and a rapid, specific, and reliable diagnostic method is imperative for disease monitoring and management. Here, we established a rapid and reliable method for isothermal reverse transcription recombinase polymerase amplification (RT-RPA) combined with a lateral flow strips (LFS) assay for the detection of BYDV-infected oat samples based on the conserved sequences of the BYDV coat protein gene. Specific primers and a probe for RT-RPA reacted and optimally incubated at 42℃ for 10 min, and the end-labeled amplification products were visualized on LFS within 10 min. The RT-RPA-LFS assay showed no cross-reactivity with other major cereal viruses, including barley mild mosaic virus, barley yellow mosaic virus, and rice black streaked dwarf virus, indicating high specificity of the assay. The sensitivity of the RT-RPA-LFS assay was similar to that of reverse transcription polymerase chain reaction, and it was successfully validated to detect BYDV in oat samples from six different regions and in individual aphids. These results confirm the outstanding potential of the RT-RPA-LFS assay for rapid detection of BYDV.

Cytological Changes of Infected Barley Tissues with Barley Yellow Mosaic Virus (보리호위축병 바이러스에 감염된 보리조직의 세포학적 관찰)

  • So, In-Young;Cheong, Seong-Soo
    • Applied Microscopy
    • /
    • v.20 no.1
    • /
    • pp.120-127
    • /
    • 1990
  • The zoospores of Polymyxa graminis known as vector of barley yellow mosaic virus(BYMV) were found from the rootlets of diseased barley plants. The X-bodies in the lower epidermis of diseased leaf tissues were reddish under fluorescence microscopy. The shape of virus particles was flexuous rod and 300-1,000 nm in length. The pinwheel structures, cylindrical inclusion bodies, ring-form inclusion bodies, and crystalline lattice-like structure were found together with virus particles in the cytoplasm of diseased leaf tissues. Generally, intracellular organelles in the diseased barley leaf tissues infected with BYMV were either not well-developed or degenerated.

  • PDF

Simultaneous Detection of Barley Virus Diseases in Korea (국내 맥류에 발생하는 바이러스병 동시진단 방법)

  • Lee, Bong-Choon;Bae, Ju-Young;Kim, Sang-Min;Ra, Ji-Eun;Choi, Nak Jung;Choi, Man Young;Park, Ki Do
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.363-366
    • /
    • 2017
  • Barley mild mosaic virus (BaMMV), Barley yellow mosaic virus (BaYMV) and Barley yellow dwarf virus (BYDV) have been identified as an important causative agents for an economically important disease of winter barley in Korea. In this study, a multiplex reverse transcription polymerase chain reaction (mRT-PCR) method was used for the simultaneous detection. Three sets of virus-specific primers targeted to the capsid protein coding genes of BaMMV, BaYMV and BYDV were used to amplify fragments that were 594 bp, 461 bp, and 290 bp, respectively. Several sets of primers for each target virus were evaluated for their sensitivity and specificity by multiplex RT-PCR. The optimum primer concentrations and RT-PCR conditions were determined for the multiplex RT-PCR. The mRT-PCR assay was found to be a better and rapid virus diagnostic tool of specific barley diseases and potential for investigating the epidemiology of these viral diseases.

Direct Stem Blot Immunoassay (DSBIA): A Rapid, Reliable and Economical Detection Technique Suitable for Testing Large Number of Barley Materials for Field Monitoring and Resistance Screening to Barley mild mosaic virus and Barley yellow mosaic virus

  • Jonson, Gilda;Park, Jong-Chul;Kim, Yang-Kil;Kim, Mi-Jung;Lee, Mi-Ja;Hyun, Jong-Nae;Kim, Jung-Gon
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.260-265
    • /
    • 2007
  • Testing a large number of samples from field monitoring and routine indexing is cumbersome and the available virus detection tools were labor intensive and expensive. To circumvent these problems we established tissue blot immunoassay (TBIA) method an alternative detection tool to detect Barley mild mosaic virus (BaMMV) and Barley yellow mosaic virus (BaYMV) infection in the field and greenhouse inoculated plants for monitoring and routine indexing applications, respectively. Initially, leaf and stem were tested to determine suitable plant tissue for direct blotting on nitrocellulose membrane. The dilutions of antibodies were optimized for more efficient and economical purposes. Results showed that stem tissue was more suitable for direct blotting for it had no background that interferes in the reaction. Therefore, this technique was referred as direct stem blot immunoassay or DSBIA, in this study. Re-used diluted (1:1000) antiserum and conjugate up to 3 times with the addition of half strength amount of concentrated antibodies was more effective in detecting the virus. The virus blotted on the nitrocellulose membrane from stem tissues kept at room temperature for 3 days were still detectable. The efficiency of DSBIA and RT-PCR in detecting BaMMV and BaYMV were relatively comparable. Results further proved that DSBIA is a rapid, reliable and economical detection method suitable for monitoring BaMMV and BaYMV infection in the field and practical method in indexing large scale of barley materials for virus resistance screening.

Inoculum Sources to Generate High Mechanical Transmission of Barley yellow mosaic virus

  • Jonson, Gilda;Kim, Yang-Kil;Kim, Mi-Jung;Park, Jong-Chul;Hyun, Jong-Nae;Kim, Jung-Gon
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.103-105
    • /
    • 2007
  • Mechanical transmission of barley seedlings with barley yellow mosaic virus (BaYMV) is generally inefficient and is the major constraint for testing cultivar resistance to the virus. To explore mechanical transmission, BaYMV-infected barley plants were grown at different conditions and used as inoculum sources to seedlings of susceptible barley cultivar Baegdong. Extracts prepared from BaYMV-infected Baegdong plants at 47, 53, 74, and 90 days after symptom appearance (DASA) and grown at 10 and $12^{\circ}C$ gave 10, 30, 68 and 76% infection, respectively on inoculated susceptible barley cv. Baegdong seedlings. While Jinyangbori, another susceptible cultivar obtained 95% infection rate inoculated with extracts from 90 DASA disease source and grown at $10/12^{\circ}C$. However, low infection rates were obtained when the virus sources were grown in a greenhouse at $15-18^{\circ}C$. Our results indicate that longer incubation period and lower temperature are required for virus accumulation and stability.