• Title/Summary/Keyword: Barium hexaaluminate

Search Result 6, Processing Time 0.022 seconds

Synthesis of barium hexaaluminate by sol - gel method (졸 - 겔법에 의한 바륨헥사알루미네이트 합성)

  • 백영순;김형진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.2
    • /
    • pp.142-151
    • /
    • 1995
  • Complex alkoxides were synthesized using metal alkoxide method and were then hydrolyzed to prepare the precursors using sol - gel method. Then, the precursors were calcined in order to make barium hexaaluminate. Factors affecting the material properties of the barium hexaaluminate precursors were studied and they are the kinds and amount of alcohols, and reaction time. In addition, in the course of hydrolysis, the effects of the amount of water, reaction temperature and aging time were also studied in terms of the specific surface area and average particle size of the barium hexaaluminates.

  • PDF

Synthesis of Barium Hexaaluminate Phosphros Using Combinatorial Chemistry (조합화학을 이용한 망간(2+)과 유로피움)2+)이 첨가된 Barium Hexaaluminate 형광체의 합성 및 광특성 분석)

  • 박응석;최윤영;손기선;김창해;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.134-139
    • /
    • 2000
  • The main objective of the present investigation is to show the feasibility of combinatorial chemistry by applying this method to phosphor syntehses. In this respect barium hexaaluminate phosphor was prepared by the split-pool combinatorial method, which enabled much more rapid search of optimum compositions of target phosphors than conventional synthetic methods. Barium hexaaluminate phosphors doped with Eu2+ exhibit blue emission while those co-doped with Mn2+ and Eu2+ exhibit green emission. Basically, the phosphor doped with 1.3 mole of Ba and 0.06~0.15 mole of Eu2+ exhibit the maximum value of emission intensity at 435${\mu}{\textrm}{m}$. Under the UV and VUV extitations, the barium hexaaluminate phosphor co-doped with Mn2+ and Eu2+ shows strong green emission.

  • PDF

Effect of Water Wash and Dry Temperature in Homogeneous Precipitation Method on the Manufacture of Mn-added Barium Hexaaluminates (균일용액침전법에서 수세여부와 건조온도가 망간이 첨가된 바륨헥사알루미네이트의 제조에 미치는 영향)

  • Park, Ji Yun;Kim, Seo Young;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.435-442
    • /
    • 2021
  • Mn-added Barium hexaaluminates were manufactured by homogeneous precipitation method using Urea. The effects of water wash and dry temperature were analyzed by thermal weight analysis, X-ray diffraction analysis, and scanning electron microscopy. Catalysts that went through the filtration step only produced pure hexaaluminate images compared to those that went through the water wash step. During the drying process, it seems that the remaining urea helps dehydration of the precursor and affects the phase shift of gibbsite to boehmite, which is easy to convert to pure hexaaluminate. The catalyst WO200 gave the best performance in the methane combustion reaction, and NOx was not emitted in the reaction for all catalysts. Hexaaluminates were found to affect reducing the highest CO emissions.

Thermal Characteristic Study of Catalysts for Ionic liquid Monopropellant Thruster in High Temperature (이온성 액체 단일 추진제 추력기용 촉매의 고온특성 연구)

  • Kang, Shin-Jae;Lee, Jeong-Sub;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.85-88
    • /
    • 2011
  • In the trend of world wide environment preservation, researchers tried to find new environment friendly propellant instead of highly toxic propellant, Hydrazine. Among the candidates, ionic liquid propellants have lower toxicity, higher density, and higher specific impulse than Hydrazine. These ionic liquid propellants have high combustion chamber temperature, so catalyst supports such as gamma alumina cannot withstand in that temperature. Therefore, a catalyst that showed stable characteristic in high temperature is needed. Barium dopped alumina can be changed to Hexaaluminate in high temperature, and its characteristic in high temperature is superior than gamma alumina. Barium dopped Alumina is wet impregnated with Platinum and heated up to $1300^{\circ}C$ and $1400^{\circ}C$ for 2 hours. Those catalysts were examined by XRD, SEM, EDS, BET, and Drop test.

  • PDF

Synthesis of (${Ba_{1.3}}{Al_{12}}{O_{19}}$:$Mn^{2+}$) by Ultrasonic Spray Pyrolysis and Effect of Precursor Type on Morphology and Photoluminescence (초음파 분무 열분해법에 의한 바륨 헥사알루미네이트(${Ba_{1.3}}{Al_{12}}{O_{19}}$:$Mn^{2+}$) 제조 및 전구체 종류에 따른 형성과 발광 특성)

  • 김경화;강윤찬;김창해;박희동;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.173-178
    • /
    • 2001
  • 본 연구에서는 PDP용 녹색 형광체의 대안인 $Ba_{1.3}$A $l_{12}$ $O_{19}$:$Mn^{2+}$ 분말을 초음파 분무 열분해법으로 합성하였으며 활성제인 $Mn^{2+}$의 첨가량과 모체를 구성하는 바륨 및 알루미늄의 전구체 물질들의 조합을 변화시킴으로써 형광체 분말의 형태 및 발광특성을 조절하였다. 최적의 발광 휘도를 나타내는 $Mn^{2+}$의 농도는 0.25몰을 첨가하였을 때이며 녹색 발광 영역인 517nm에서 최대 발광 효율을 나타내었다. 바륨의 전구체 물질로는 초산염, 질산염, 염화물 및 수산화물을 사용하였으며 알루미늄 전구체 물질로는 질산염 및 염화물을 사용하였다. 전구체는 합성된 분말의 형상에 영향을 미치는데 구형을 유지하거나 혹은 뭉치거나 구형이 깨지는 등 전구체 조합에 따라 얻어지는 분말의 형태가 달라졌다. 합성된 형광체 분말들은 일반적인 고상 반응의 온도보다 낮은 열처리 온도인 140$0^{\circ}C$, 5시간 유지에서는 좋은 VUV 발광 특성을 가졌다. 또한 전구체의 조합은 형광체 발광 효율에도 영향을 미치는데 바륨과 알루미늄은 염화물을, 망간은 질산염을 사용하였을 때 가장 좋은 발광 휘도를 나타내었다.다.다.다.

  • PDF

Effects of Concentration of Precipitants and Aging Time on Synthesis of Mn-Substituted Barium Hexaaluminates by Homogeneous Precipitation (균일용액침전법을 이용한 침전제의 농도와 합성 시간에 따른 Mn이 대체된 바륨 헥사알루미네이트의 합성의 영향)

  • Park, Ji Yun;Jung, You Shick;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.349-355
    • /
    • 2018
  • $BaMnAl_{11}O_{19}$ was prepared by urea-induced homogeneous precipitation and characterized by X-ray diffraction and scanning electron microscopy. At increased precipitant concentrations, AlOOH replaced $Al(OH)_3$ as an Al precursor. $BaMnAl_{11}O_{19}$ exhibited enhanced catalytic combustion performance and inhibited CO generation. Catalytic performance was also enhanced by the presence of $BaAl_2O_4$ and $BaMnAl_{11}O_{19}$. Compared to $BaAl_2O_4$, $BaMnAl_{11}O_{19}$ exhibited superior catalytic combustion activity.