• Title/Summary/Keyword: Bar-shaped

Search Result 148, Processing Time 0.026 seconds

The Unique Mechanism of SNX9 BAR Domain for Inducing Membrane Tubulation

  • Park, Joohyun;Zhao, Haiyan;Chang, Sunghoe
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.753-758
    • /
    • 2014
  • Sorting nexin 9 (SNX9) is a member of the sorting nexin family of proteins and plays a critical role in clathrinmediated endocytosis. It has a Bin-Amphiphysin-Rvs (BAR) domain which can form a crescent-shaped homodimer structure that induces deformation of the plasma membrane. While other BAR-domain containing proteins such as amphiphysin and endophilin have an amphiphatic helix in front of the BAR domain which plays a critical role in membrane penetration, SNX9 does not. Thus, whether and how SNX9 BAR domain could induce the deformation of the plasma membrane is not clear. The present study identified the internal putative amphiphatic stretch in the $1^{st}$ ${\alpha}$-helix of the SNX9 BAR domain and proved that together with the N-terminal helix ($H_0$) region, this internal putative amphiphatic stretch is critical for inducing membrane tubulation. Therefore, our study shows that SNX9 uses a unique mechanism to induce the tubulation of the plasma membrane which mediates proper membrane deformation during clathrinmediated endocytosis.

Pullout Test of Headed Reinforcing Bar in RC or SFRC Members with Side-Face Blowout Failure

  • Lee, Chang-Yong;Kim, Seung-Hun;Lee, Yong-Taeg
    • Architectural research
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this study, side-face blowout failure strength of high strength headed reinforcing bar, which is vertically anchoring between RC or SFRC members, is evaluated throughout pullout test. The major test parameters are content ratio of high strength steel fibers, strength of rebar, length of anchorage, presence of shear reinforcement, and the side concrete cover thickness planned to be 1.3 times of the rebar. In pullout test, tensile force was applied to the headed reinforcing bar with the hinged supports positioned 1.5 and 0.7 times the anchorage length on both sides of the headed reinforcing bar. As a result, the cone-shaped crack occurred where the headed reinforcing bar embedded and finally side-face blowout failure caused by bearing pressure of the headed reinforcing bar. The tensile strength of specimens increased by 13.0 ~26.2% with shear reinforcement. The pullout strength of the specimens increased by 3.6 ~15.4% according to steel fiber reinforcement. Increasing the anchoring length and shear reinforcement were evaluated to reduce the stress bearing ration of the total stress.

A Study on the Application Methods of Chemicals for Reducing Grounding Resistance of the Bar-Shaped Electrode on the Power Distribution System (배전계통에서 봉형접지극의 접지저항 향상을 위한 접지저항저감제 사용방법에 관한 연구)

  • Park, Jung-Shin;Na, Chae-Dong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.136-144
    • /
    • 2010
  • The bar-shaped electrode is very popular for earth construction in Korea. Copper ground rod, Deep-buried ground rod and conductive concrete ground rod are major types of the bar-shaped electrode and generally applied on the distribution system. But in most case, to obtain the targeted ground resistance is difficult, because ground resistance is very different by soil condition. Therefore, a chemicals for reducing ground resistance is applied. In this paper, the initial and the variation of ground resistance according to the applied methods and types of chemicals over one year are compared with copper ground rod applied with water and the experimental results show that the new methods with chemicals reduced not only the initial ground resistance but also the variation of ground resistance over year.

Development of Surface Myoelectric Sensor for Myoelectric Hand Prosthesis

  • Choi, Gi-Won;Moon, In-Hyuk;Sung, So-Young;Lee, Mynug-Joon;Chu, Jun-Uk;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1268-1271
    • /
    • 2005
  • This paper proposes a compact-sized surface myoelectric sensor for myoelectric hand prosthesis. To fit the surface myoelectric sensor in the socket of the myoelectric hand prosthesis, the sensor should be a compact size. The surface myoelectric sensor is composed of a skin interface and a single processing circuit that are mounted on a single package. Since the skin interface has one reference and two input electrodes, and the reference electrode is located in middle of two input electrodes, we propose two types of sensors with the circle- and bar-shaped reference electrode, but all input electrodes are the bar-shaped. The metal material used for the electrodes is the stainless steel (SUS440) that endures sweat and wet conditions. Considering conduction velocity and median frequency of the myoelectric signal, we select the inter-electrode distance (IED) between two input electrodes as 18mm, 20mm, and 22 mm. The signal processing circuit consists of a differential amplifier with band pass filter, a band rejection filter for rejecting 60Hz power-line noise, amplifiers, and a mean absolute value circuit. We evaluate the proposed sensor from the output characteristics according to the IED and the shape of the reference electrode. From the experimental results we show the surface myoelectric sensor with the 18mm IED and the bar-shaped reference electrode is suitable for the myoelectric hand prosthesis.

  • PDF

Experimental Study on the Flexural Behavior of Inverted T-Shaped Steel·Concrete Composite Deck for Bridges (역T형강·콘크리트 합성바닥판의 휨거동에 관한 실험적 연구)

  • Kim, Sung Hoon;Park, Young Hoon;Lee, Seung Yong;Choi, Jun Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.331-340
    • /
    • 2008
  • This study is to suggest the details of new concept of bridge deck. Experimental studies on the behavior of a inverted T-shaped steelconcrete composite deck were carried out. The part of inverted T-shaped steel is embedded in concrete. Reinforced concrete deck specimen and composite deck specimens were fabricated and static bending fracture tests were conducted. The ultimate strength and fracture strength of specimens were evaluated. The effects of shear hole crossing bars of composite deck were also analyzed. From the results of experiments, composite deck with shear hole crossing bar increased shear strength, and showed typical tensile failure. Ultimate strength and fracture strength of composite deck with shear hole crossing bar are higher than those of reinforced concrete deck. The displacement of composite deck is higher than that of reinforced concrete deck.

A Study on the Corner Filling in the Drawing of Quadrangle Rod from Round Bar (원형봉에서 사각재 인발 공정의 코너 채움에 관한 연구)

  • 김용철;김동진;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.143-152
    • /
    • 2000
  • The comer filling in shaped drawing process is an important characteristic, unlike the round drawing. It has also influence on the dimensional accuracy of the product. In this study, therefore, the shaped drawing process has been simulated by the three dimensional rigid-plastic finite element method in order to investigate the effect of process variables such as reduction in area and semi-die angle to the corner filling. The artificial neural network has also been introduced to reduce the number of simulations. To verify the results of simulations, experiments have been performed on the real industrial products. According to the results, the main process variable on the corner filling is the combination of semi-die angle in the irregular shaped drawing processes, but in the case of regular shaped drawing processes, reduction in area has great influence on the corner filling.

  • PDF

The Ductile Behavior Test of the Ultra High Perfomance Fiber Reinforced I Beam by the Combination of the Fiber and Group of Reinforcement Bar (강섬유와 철근집합체 조합을 이용한 초고강도 섬유보강 철근 콘크리트 I형 보의 연성거동에 관한 실험)

  • Park, Jin-Young;Han, Sang-Mook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • The purpose of this study is to induce the ductile behavior of the Ultra High Perfomance Concrete Reinforced I beam by substituting the part of steel fiber for bundle of reinforcing bars. Experiment of flexural behavior of the Ultra High Performance Concrete I shaped beam with the combination of the steel fiber and bundle of reinforcement bars was carried out. The volume fractions of steel fiber are 0%, 0.7%, 1%, 2%. The bundle of reinforcing bars and prestressing wire are used to restrain the concrete in compression zone. Length of bundle of reinforcing bar and prestressing wire is the one of test factors. The 9 Reinforced UHPC I shaped beam were made with these test factors. Not only steel fiber but also bundle of longitudinal reinforcing bar has effect to induce the ductile behavior of Reinforced UHPC I beam. The combination of 0.7% or 1.0% steel fiber and bundle of reinforcing bar showed the effective ductile behavior of I beam. The relationship of load-deflection and the crack pattern indicate the usefulness of the bundle of the longitudinal bar which has small diameter with close arrangement each other.

A study on improvement of the lower canvas bar for reducing loss of stow net on anchor (안강망 어구의 유실 감소를 위한 하부 종대의 성능 개선 연구)

  • LEE, Gun-Ho;CHO, Sam-Kwang;KIM, In-Ok;CHA, Bong-Jin;JUNG, Seong-Jae;KOO, Myeong-Seong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • In this study, the conventional cylinder-shaped lower bar on the canvas was modified and its performance was tested to improve the opening force of the stow net on anchor. The improved new lower bar used in the test is consisted of 13 flat bars with a length of 1.8 m, a width of 0.075 m and a thickness of 4 mm, and a pipe with a length of 2.0 m and a diameter of 50 mm. A stow net with the improved lower bar and a stow net with an existing lower bar were installed underwater and their trajectories for 21 hours were examined. To confirm their trajectories, GPS loggers were attached to the buoys on the left and right canvases and the buoy of the hauling rope. As a result of the test, the rotation of the gear with the improved bar was smoother than that with the existing bar. As a result of comparing the changes in the interval of the buoys attached to the canvas after the low and high tide, the buoy spacing of the gear with the improved bar is wider than that of the conventional gear; moreover, the larger the interval, the smoother the rotation of the fishing gear was. Therefore, it is considered that using the improved lower bar can enhance the performance of the stow net.

Experimental Evaluation on Bond Strengths of Reinforcing Bar in Coils with Improved Machinability during Straightening Process (직선화 가공성을 고려한 코일철근의 실험적 부착강도 평가)

  • Chun, Sung-Chul;Choi, Oan-Chul;Jin, Jong-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • A new deformation of reinforcing bar in coils was proposed to improve a machinability of straightening process, which has crescent-shaped transverse ribs with an inclination angle of 50 degrees, a crest width of $0.15d_b$, and a flank inclination of 55 degrees. The proposed deformation can increase contact area between a surface of re-bar and a groove of a roller during a straightening process and, therefore, it might reduce a damage of ribs, improve a final straightness, and enhance an efficiency of the straightening process. Splice tests were conducted to evaluate bond strengths of three types of re-bar in coils including the proposed re-bar, of which the inclination angles of transverse ribs were 50, 60, and 90 degrees, respectively. Test results show that the re-bars in coils have higher bond strengths than predicted strengths by equations of Orangun et al., ACI 408, and KCI by at least 10%. Correlation coefficients of bond strengths between a straight bar and re-bars in coils are 0.94 and more. Consequently, equations of the KCI code for determining development and splice lengths can be applied to the tested re-bars in coils.

Shape morphing and adjustment of pantographic morphing aerofoil section structure

  • Saeed, Najmadeen M.;Kwan, Alan S.K.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.193-207
    • /
    • 2019
  • This study concerns with morphing structures, e.g. as applied in the aerospace industry. A morphing aerofoil structure capable of variable geometry was developed, which was shown to be able to cater for the different aerodynamic requirements at different stages of flight. In this work, the useful and relatively simple method has been applied, which provides a direct method for calculating required morphing shape displacements via finding the most effective bar through calculating bar sensitivity to displacement and calculating set of length actuations for bar assembly to control/adjust shape imperfection of prestressable structural assemblies including complex elements ("macro-elements", e.g., the pantographic element), involving Matrix Condensation. The technique has been verified by experiments on the physical model of an aerofoil shaped morphing pantographic structure. Overall, experimental results agree well with theoretical prediction. Furthermore, the technique of multi-iteration adjustment was presented that effective in eliminating errors that occur in the practical adjustment process itself. It has been demonstrated by the experiments on the physical model of pantographic morphing structure. Finally, the study discusses identification of the most effective bars with the objective of minimal number of actuators or minimum actuation.