• Title/Summary/Keyword: Bar code design

Search Result 109, Processing Time 0.025 seconds

Effect of Recycled Coarse Aggregate (RCA) Replacement Level on the Bond Behaviour between RCA Concrete and Deformed Rebars (순환 굵은골재의 혼입률에 따른 콘크리트와 이형철근의 부착 거동)

  • Jang, Yong-Heon;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.123-130
    • /
    • 2010
  • In this study, mixed recycled coarse aggregate (RCA) was produced by mixing RCA from waste concrete in order to evaluate a new method of RCA production. Bond strength between reinforcing bars and RCA concrete was qualitatively evaluated as a part of continuous studies to establish design code of reinforced concrete structural members using recycled aggregate. For practical application, specimens were manufactured with the ready mix RCA concrete. Parameters investigated include: concrete compressive strength (i.e 21, 27 and 40 MPa), replacement levels (i.e 0, 30, 60 and 100%), bar position (i.e vertical and horizontal) and bar location (75 and 225 mm). For the pull-out test, each specimen was in the form of a cube, with each side of 150 mm in length and a deformed bar, 16 mm in diameter, was embedded in the center of each specimen. From the test results, the most of HT type specimen with compressive strength of 21 and 27 MPa showed lower bond strength than the ones provided in CEB-FIP and considered in reinforcement location factor ($\alpha\;=\;1.3$). It was reasoned that bonded area of top bar specimen was reduced at the soffit of reinforcement because of bleed water of fresh concrete. Therefore the reinforcement location factor in current KCI design code should be reviewed and modified.

Basic Design of Hydrogen Liquefier Precooled by Cryogenic Refrigerator

  • Kim, Seung-Hyun;Chang, Ho-Myung;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.124-135
    • /
    • 1998
  • A thermodynamic cycle analysis is performed for refrigerator-precooled Linde-Hampson hydrogen liquefiers, including catalysts for the ortho-to-para conversion. Three different configurations of the liquefying system, depending upon the method of the o-p conversion, are selected for the analysis. After some simplifying and justifiable assumptions are made, a general analysis program to predict the liquid yield and the figure of merit (FOM) is developed with incorporating the commercial computer code for the thermodynamic properties of hydrogen. The discussion is focused on the effect of the two primary design parameters - the precooling temperature and the high pressure of the cycle. When the precooling temperature is in a range between 45 and 60 K, the optimal high pressure for the maximal liquid yield is found to be about 100 to 140 bar, regardless of the ortho-to-para conversion. However, the FOM can be maximized at slightly lower high pressures, 75 to 130 bar. It is concluded that the good performance of the precooling refrigerator is significant in the liquefiers, because at low precooling temperatures high values of the liquid yield and the FOM can be achieved without compression of gas to a very high pressure.

  • PDF

Development Length Effects of High Strength Headed Bar (고강도 확대머리 이형철근의 정착길이 효과에 관한 실험적 연구)

  • Moon, Jeong-Ho;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.75-82
    • /
    • 2015
  • An experimental study has been carried out to examine development length effects for high strength headed deformed bars. Current design codes limit the specified yield strength of headed bars to 400 MPa. Such the limit is due to the lack of experimental studies on headed bars made of high strength materials. Thus a test program was planed with headed bars with the yield strength of 600 MPa. The threaded head type with head shapes of round plate and circular cone was selected in this study. The experimental variables were development length, number of bars, and head shape. Specimens were classified into L-type and S-type depending on the development length. The development length of L-type was computed according to the design code without considering the limit. S-type specimens had shorter development lengths than the L-type. Further classification was made depending on the shape of heads. A-types have the head shape of round plate and B-types have the shape of circular cone. Three L-type specimens were fabricated with the variable of number of bars (1, 2, and 3). Four specimens for each of SA and SB types were made with development lengths of 50%, 45%, 40%, and 35% compared with L-type. Pullout tests was carried out with 11 specimens. The test results were compared with computed strengths with the design code equations (Appendix II). Based the current studies, it can be said that high strength headed deformed bars used in this study be able to provide such strengths computed with the current design code without considering the yield strength limit.

An Experimental Study on the Shear Strength of Chemical Anchors Embedded into Non Cracking Plain Concrete (비균열 무근콘크리트에 매입된 케미컬 앵커의 전단내력에 관한 실험적 연구)

  • Seo, Seong-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • The use of post installed anchors with adhesive type has lately been increasing when it is necessary to repair, reinforce, or remodel structures. This method provides flexibility and simplicity for construction of structural members that require adhering or fixing. Meanwhile, strength evaluation of anchors with expansion type among post installed anchors systems has nearly reached setting up stage like design code through continual experimental studies for the last ten years, but analyses or experimental studies on anchor system with adhesive type are not yet sufficient. Accordingly, the designers and builders of korea depend on foreign design codes since there are no exact domestic design code they could credit. In this study, the objectives are investigating the effects on adhesive strength of anchors embedded into plain concrete by shear experiments of anchors with variables such as edge distance, anchor interval, and load direction and supplying basic data for enactment of domestic design code.

Behavior of 550MPa 43mm Hooked Bars Embedded in Beam-Column Joints (보-기둥 접합부에 정착된 550 MPa 43 mm 갈고리철근의 거동)

  • Bae, Min-Seo;Chun, Sung-chul;Kim, Mun-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.611-620
    • /
    • 2016
  • In the construction of nuclear power plants, only 420 MPa reinforcing bars are allowed and, therefore, so many large-diameter bars are placed, which results in steel congestion. Consequently, re-bar works are difficult and the quality of RC structures may be deteriorated. To solve the steel congestion, 550 MPa bars are necessary. Among many items for verifying structural performance of reinforced concrete with 550 MPa bars, the 43 mm hooked bars are examined in this study. All specimens failed by side-face blowout and the side cover explosively spalled at maximum loads. The bar force was initially transferred to the concrete primarily by bond along a straight portion. At the one third of maximum load, the bond reached a peak capacity and began to decline, while the hook bearing component rose rapidly. At failure, most load was resisted by the hook bearing. For confined specimens with hoops, the average value of test-to-prediction ratios by KCI code is 1.45. The modification factor of confining reinforcement which was not allowed for larger than 35 mm bars can be applied to 43 mm hooked bars. For specimens with 70 MPa concrete, the average value of test-to-prediction ratios by KCI code is 1.0 which is less than the values of the other specimens. The effects of concrete compressive strength should be reduced. An equation to predict anchorage capacity of hooked bars was developed from regression analysis including the effects of compressive strength of concrete, embedment length, side cover thickness, and transverse reinforcement index.

The study and design of a deuteron drift tube linear accelerator for middle energy neutron source

  • Tianhao Wei;Yuanrong Lu;Zhi Wang;Meiyun Han;Ying Xia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3933-3941
    • /
    • 2024
  • The paper concerns a room-temperature cross-bar H-mode (CH) drift tube linac (DTL) with KONUS (Kombinierte Null Grad Struktur) [1,2] beam dynamics. To make the acceleration in DTL cell more efficient, we studied the correlation between transit time factor (TTF) and structural coefficients, first. Furthermore, we developed a new code with Python to demonstrate the longitudinal dynamics more clearly. The code computationally generates clusters, bunch centers, and emittance growth in a single figure. Thus, the stabilization region and cluster evolution at various negative phases can be studied. Based on the above studies, we designed a 162.5 MHz CH-DTL to accelerate 10 mA D+ from 2.11 MeV to 3.25 MeV in continuous-wave (CW) mode. The proposed CH-DTL is a part of the Middle Energy Neutron Source (MENS). The dynamics and RF design were iterated to make the gap voltage error lower than 1 %. The initial beam is assumed to come from a Radio Frequency Quadrupole accelerator (RFQ). The geometries of the CH-DTL are optimized by using CST. Multiparticle tracking from LEBT to RFQ is performed with TraceWin and the transmission efficiency in the CH-DTL is 100 %.

Development of Optimization Code of Type 3 Composite Pressure Vessels Using Semi-geodesic algorithm (준측지궤적 알고리즘을 이용한 타입 3 복합재 압력용기의 최적설계 프로그램 개발)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Cheol-Ung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Composite vessels for high pressure gas storage are commonly used these days because of their competitive weight reduction ability maintaining strong mechanical properties. To supplement permeability of composite under high pressure, it is usually lined by metal, which is called a Type 3 vessel. However, it has many difficulties to design the Type 3 vessel because of its complex geometry, fabrication process variables, etc. In this study, therefore, GUI (graphic user interface) optimal design code for Type 3 vessels was developed based on semi-geodesic algorithm in which various factors of geometry and fabrication variables are considered and genetic algorithm for optimization. In addition, hydrogen vessels for 350/700 bar that can be applied to FCVs(fuel cell vehicles) were designed using this code for verification.

Strength Analysis of Joints in Floating Slab Track (플로팅 슬래브궤도 연결부의 강도 분석)

  • Kwon, Ku-Sung;Chung, Won-Seok;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.375-381
    • /
    • 2011
  • The passage of railway vehicles generates mechanical vibrations and noises. This problem can be mitigated by the 'floating slab track' that isolating from infrastructures by installing vibration isolator in the concrete slab track. In the previous researches, adjacent floating slab tracks are connected by dowel bar system. It has been reported that many dowel bars with less diameter show better load transfer efficiency (LTE) compared to small number of dowel bars with larger diameter under the condition of the same dowel area. In this study, dowel system is further considered as a concrete anchorage system and the design strength of the dowel system was evaluated based on ACI code 318-08 Appendix D. The design strength of dowel system is then verified against failure load test of floating slab system.

  • PDF

Anti-Seismic of Existing Bridge Pier by Nickel-chrome Alloy Bar (니켈-크롬 합금강바를 이용한 기존 교각부의 내진보강)

  • Jang, Il-Young;Song, Seok-Min;Yoo, Jeong-Soo;Son, Chang-Ho;Son, Deok-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.131-132
    • /
    • 2010
  • Seismic design for new built bridges has been considered which is being used now. However, before the revised code for seismic design is issued, the reinforced concrete bridge piers which has been built and being used are pretty weak under the lateral seismic load. experiments of bridge piers are done under iterative lateral load, according to experimental results, the influence of Nikon-Chrome alloy steel barson performance of bridge piers is analyzed, also the shape effect of anti-seismic reinforcement on pier behavior is discussed.

  • PDF

Genetic algorithm-based geometric and reinforcement limits for cost effective design of RC cantilever retaining walls

  • Mansoor Shakeel;Rizwan Azam;Muhammad R. Riaz
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.337-348
    • /
    • 2023
  • The optimization of reinforced concrete (RC) cantilever retaining walls is a complex problem and requires the use of advanced techniques like metaheuristic algorithms. For this purpose, an optimization model must first be developed, which involves mathematical complications, multidisciplinary knowledge, and programming skills. This task has proven to be too arduous and has halted the mainstream acceptance of optimization. Therefore, it is necessary to unravel the complications of optimization into an easily applicable form. Currently, the most commonly used method for designing retaining walls is by following the proportioning limits provided by the ACI handbook. However, these limits, derived manually, are not verified by any optimization technique. There is a need to validate or modify these limits, using optimization algorithms to consider them as optimal limits. Therefore, this study aims to propose updated proportioning limits for the economical design of a RC cantilever retaining wall through a comprehensive parametric investigation using the genetic algorithm (GA). Multiple simulations are run to examine various design parameters, and trends are drawn to determine effective ranges. The optimal limits are derived for 5 geometric and 3 reinforcement variables and validated by comparison with their predecessor, ACI's preliminary proportioning limits. The results indicate close proximity between the optimized and code-provided ranges; however, the use of optimal limits can lead to additional cost optimization. Modifications to achieve further optimization are also discussed. Besides the geometric variables, other design parameters not covered by the ACI building code, like reinforcement ratios, bar diameters, and material strengths, and their effects on cost optimization, are also discussed. The findings of this investigation can be used by experienced engineers to refine their designs, without delving into the complexities of optimization.