• Title/Summary/Keyword: Bar Parameters

Search Result 562, Processing Time 0.03 seconds

Image Fusion of Lymphoscintigraphy and Real images for Sentinel Lymph Node Biopsy in Breast Cancer Patients (유방암 환자의 감시림프절 생검을 위한 림포신티그라피와 실사영상의 합성)

  • Jeong, Chang-Bu;Kim, Kwang-Gi;Kim, Tae-Sung;Kim, Seok-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.114-122
    • /
    • 2010
  • This paper presents a method that registers a lymphoscintigraphy to the real image captured by a CMOS camera, which helps surgeons to easily and precisely detect sentinel lymph nodes for sentinel lymph node biopsy in breast cancer patients. The proposed method consists of two steps: pre-matching and image registration. In the first step, we localize fiducial markers in a lymphoscintigraphy and a real image of a four quadrant bar phantom by using image processing techniques, and then determines perspective transformation parameters by matching with the corresponding marker points. In the second step, we register a lymphoscintigraphy to a real images of patients by using the perspective transformation of pre-matching. To examine the accuracy of the proposed method, we conducted an experiment with a chest mock-up with radioactive markers. As a result, the euclidean distance between corresponding markers was less than 3mm. In conclusion, the present method can be used to accurately align lymphoscintigraphy and real images of patients without attached markers to patients, and then provide useful anatomical information on sentinel lymph node biopsy.

Computation of stress-deformation of deep beam with openings using finite element method

  • Senthil, K.;Gupta, A.;Singh, S.P.
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.245-268
    • /
    • 2018
  • The numerical investigations have been carried out on deep beam with opening subjected to static monotonic loading to demonstrate the accuracy and effectiveness of the finite element based numerical models. The simulations were carried out through finite element program ABAQUS/CAE and the results thus obtained were validated with the experiments available in literature. Six simply supported beams were modelled with two square openings of 200 and 250 mm sides considered as opening at centre, top and bottom of the beam. In order to define the material behaviour of concrete and reinforcing steel bar the Concrete Damaged Plasticity model and Johnson-Cook material parameters available in literature were employed. The numerical results were compared with the experiments in terms of ultimate failure load, displacement and von-Mises stresses. In addition to that, seventeen beams were simulated under static loading for studying the effect of opening location, size and shape of the opening and depth, span and shear span to depth ratio of the deep beam. In general, the numerical results accurately predicted the pattern of deformation and displacement and found in good agreement with the experiments. It was concluded that the structural response of deep beam was primarily dependent on the degree of interruption of the natural load path. An increase in opening size from 200 to 250 mm size resulted in an average shear strength reduction of 35%. The deep beams having circular openings undergo lesser deflection and thus they are preferable than square openings. An increase in depth from 500 mm to 550 mm resulted in 78% reduced deflection.

Manufacturing Ti-Alloy Frames of Classes with High-Precision Laser Beam Welding (초정밀 레이저용접을 이용한 티타늄 안경테 제조)

  • 황용화;김수성;이형권;민덕기;고진현
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • An attempt was made to develop commercially pure titanium frames of glasses with a high-precision laser beam welding machine, in which a resonator with 12kw of the peak power and 200 W of maximum mean power has the capacity of variable in the range of 0.08~10 ms pulse width. In addition the optical fiber beam transmission with 400 ${\mu}{\textrm}{m}$ of the core diameter and a weld chamber to contain specimens in the inert gas atmosphere were also designed and used. In the present study. titanium frames of glasses parts such as temple plus spring hinge. bridge and top bar were experimentally manufactured by utilizing the optimum welding parameters with the optical fiber of GI 400 ${\mu}{\textrm}{m}$, 2.9J energy per pulse, and focussing position for Tee and butt joints. The titanium welded joints with laser beam welding did not reveal any severe weld defects or weld bead appearance except some pores in the weld section.

  • PDF

Impact of aggressive exposure conditions on sustainable durability, strength development and chloride diffusivity of high performance concrete

  • Al-Bahar, Suad;Husain, A.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.35-48
    • /
    • 2015
  • The main objective of this study is to evaluate the long-term performance of various concrete composites in natural marine environment prevailing in the Gulf region. Durability assessment studies of such nature are usually carried out under aggressive environments that constitute seawater, chloride and sulfate laden soils and wind, and groundwater conditions. These studies are very vital for sustainable development of marine and off shore reinforced concrete structures of industrial design such as petroleum installations. First round of testing and evaluation, which is presented in this paper, were performed by standard tests under laboratory conditions. Laboratory results presented in this paper will be corroborated with test outcome of ongoing three years field exposure conditions. The field study will include different parameters of investigation for high performance concrete including corrosion inhibitors, type of reinforcement, natural and industrial pozzolanic additives, water to cement ratio, water type, cover thickness, curing conditions, and concrete coatings. Like the laboratory specimens, samples in the field will be monitored for corrosion induced deterioration signs and for any signs of failureover initial period ofthree years. In this paper, laboratory results pertaining to microsilica (SF), ground granulated blast furnace slag (GGBS), epoxy coated rebars and calcium nitrite corrosion inhibitor are very conclusive. Results affirmed that the supplementary cementing materials such as GGBS and SF significantly impacted and enhanced concrete resistivity to chloride ions penetration and hence decrease the corrosion activities on steel bars protected by such concretes. As for epoxy coated rebars applications under high chloride laden conditions, results showed great concern to integrity of the epoxy coating layer on the bar and its stability. On the other hand corrosion inhibiting admixtures such as calcium nitrite proved to be more effective when used in combination with the pozzolanic additives such as GGBS and microsilica.

Ultrasonic-assisted Micellar Extraction and Cloud-point Pre-concentration of Major Saikosaponins in Radix Bupleuri using High Performance Liquid Chromatography with Evaporative Light Scattering Detection

  • Suh, Joon-Hyuk;Yang, Dong-Hyug;Han, Sang-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2637-2642
    • /
    • 2011
  • A new ultrasonic-assisted micellar extraction and cloud-point pre-concentration method was developed for the determination of major saikosaponins, namely saikosaponins -A, -C and -D, in Radix Bupleuri by high performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD). The non-ionic surfactant Genapol X-080 (oligoethylene glycol monoalkyl ether) was chosen as the extraction additive and parameters affecting the extraction efficiency were optimized. The highest yield was obtained with 10% (w/v) Genapol X-080, a liquid/solid ratio of 200:1 (mL/g) and ultrasonic-assisted extraction for 40 min. In addition, the optimum cloud-point pre-concentration was reached with 10% sodium sulfate and equilibration at $60^{\circ}C$ for 30 min. Separation was achieved on an Ascentis Express C18 column (100 ${\times}$ 4.6 mm i.d., 2.7 ${\mu}M$) using a binary mobile phase composed of 0.1% acetic acid and acetonitrile. Saikosaponins were detected by ELSD, which was operated at a $50^{\circ}C$ drift tube temperature and 3.0 bar nebulizer gas ($N_2$) pressure. The water-based solvent modified with Genapol X-080 showed better extraction efficiency compared to that of the conventional solvent methanol. Recovery of saikosaponins ranged from 93.1 to 101.9%. An environmentally-friendly extraction method was successfully applied to extract and enrich major saikosaponins in Radix Bupleuri.

An Experimental Study on Structural Performance of HRC Composite Beam according to types of Connection Plate with Stud Bolts (HRC 복합보의 연결플레이트 보강법에 따른 구조성능실험)

  • Lee, Soo-Kueon;Yang, Jae-Guen;Song, Chang-Seok;Jang, Eun-Young;Moon, Jun-Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • Recently, for the purpose of reducing work terms and improving performance for construction work, various methods in structure field were developed. This included the HRC system which is applicable to a typical structure (e.g., parking and office building). The HRC system introduced the Gerber Joint to raise structural efficiency and used connection plate to bolt HRC composite beam to H beam in the construction field. In this research, the experimental tests for six specimens, which were in the same field conditions, were conducted with several parameters such as the length and height of the connection plate and the number of stub bolts. The test result was compared with those made by current design codes for the deflection and strains of the main bar. Within the given load, the integration of concrete in beam and connection plate, welded with stud bolts, was verified.

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.

Aerodynamic Characteristics of an Insect-type Flapping Wings (곤충 모방 플래핑 날개의 공력 특성)

  • Han, Jong-Seob;Chang, Jo-Won;Choi, Hae-Cheon;Kang, In-Mo;Kim, Sun-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-314
    • /
    • 2007
  • Aerodynamic characteristics of an insect-type flapping wings were carried out to obtain the design parameters of Micro Hovering Air Vehicle. A pair of wing model was scaled up about 200 times and applied two pairs of 4-bar linkage mechanism to mimic the wing motion of a fruit fly(Drosophila). To verify the Weis-Fogh mechanism, a pair of wings revolved on the 'Delayed Rotation'. Lift and drag were measured in conditions of the Reynolds number based on wing tip velocity of about 1,200 and the maximum angle of attack of 40$40^{\circ}$. Inertia forces of a wing model were also measured by using a 99.98% vacuum chamber and subtracted on measured data in air. In the present study, high lift effect of Weis-Fogh mechanism was appeared in the middle of upstroke motion.

  • PDF

Simulations of fluidelastic forces and fretting wear in U-bend tube bundles of steam generators: Effect of tube-support conditions

  • Hassan, Marwan;Mohany, Atef
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.157-169
    • /
    • 2016
  • The structural integrity of tube bundles represents a major concern when dealing with high risk industries, such as nuclear steam generators, where the rupture of a tube or tubes will lead to the undesired mixing of the primary and secondary fluids. Flow-induced vibration is one of the major concerns that could compromise the structural integrity. The vibration is caused by fluid flow excitation. While there are several excitation mechanisms that could contribute to these vibrations, fluidelastic instability is generally regarded as the most severe. When this mechanism prevails, it could cause serious damage to tube arrays in a very short period of time. The tubes are therefore stiffened by means of supports to avoid these vibrations. To accommodate the thermal expansion of the tube, as well as to facilitate the installation of these tube bundles, clearances are allowed between the tubes and their supports. Progressive tube wear and chemical cleaning gradually increases the clearances between the tubes and their supports, which can lead to more frequent and severe tube/support impact and rubbing. These increased impacts can lead to tube damage due to fatigue and/or wear at the support locations. This paper presents simulations of a loosely supported multi-span U-bend tube subjected to turbulence and fluidelastic instability forces. The mathematical model for the loosely-supported tubes and the fluidelastic instability model is presented. The model is then utilized to simulate the nonlinear response of a U-bend tube with flat bar supports subjected to cross-flow. The effect of the support clearance as well as the support offset are investigated. Special attention is given to the tube/support interaction parameters that affect wear, such as impact and normal work rate.

Behavior of Concrete-Filled Square Steel Tubular Column-H Beam Connections with Reinforced bars (철근으로 보강한 콘크리트충전 각형강관 기둥-H형강보 접합부의 거동)

  • Yoo, Yeong Chan;Shin, Kyung Jae;Oh, Young Suk;Lee, Seung Joon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.377-390
    • /
    • 1997
  • The objective of this study is to investigate the structural behavior of concrete-filled steel tubular column to H-beam connections with reinforced bar. As a preliminary test, simple tensile test on the column to H-beam connections stiffened were conducted. The parameters of tensile test are the diameters of each rebars. The simple tensile test were conducted to 5 kinds of specimens. Estimating the load. displacement and strain for specimens, the result of tensile test were compared with the results of main test. On the basis of simple tensile test, tests are conducted to montonic and cyclic loading column to H-beam connections with the same diameters of rebars. Specimens of 5 are made for monotonic and cyclic loading test. In analysis, estimating the yielding strength and maximum strength of specimens on the basis of yield line theory, strength formula of beam-to column connections with concrete-filled steel tubular column was suggested.

  • PDF