• Title/Summary/Keyword: Bandwidth measurement

Search Result 575, Processing Time 0.029 seconds

Minimal Sampling Rate for Quasi-Memoryless Power Amplifiers (전력증폭기 모델링을 위한 최소 샘플링 주파수 연구)

  • Park, Young-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.185-190
    • /
    • 2007
  • In this paper, minimum sampling rates and method of nonlinear characterization were suggested for low power, quasi-memoryless PAs. So far, the Nyquist rate of the input signal has been used for nonlinear PA modeling, and it is burdening Analog-to-digital converters for wideband signals. This paper shows that the input Nyquist rate sampling is not a necessary condition for successful modeling of quasi-memoryless PAs. Since this sampling requirement relives the bandwidth requirements for Analog-to-digital converters (ADCs) for feedback paths in digital pre-distortion systems, relatively low-cost ADcs can be used to identify nonlinear PAs for wideband signal transmission, even at severe aliasing conditions. Simulation results show that a generic memoryless nonlinear RF power amplifier with AMAM and AMPM distortion can be successfully identified at any sampling rates. Measurement results show the modeling error variation is less than 0.8dB over any sampling rates.

Design of a Broadband Receiving Active Dipole Antenna Using an Equivalent Model (등가 모델을 이용한 광대역 수신용 능동 다이폴 안테나 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • In the VHF range, active antennas are widely used for wideband applications due to their small size. Active antenna consists of antenna elements and amplifiers, which are directly connected to each other. Gain and noise-figure characteristics are very important for good sensitivity performance, because it is located at the front end of a receiving system. In this study, we developed an active dipole antenna with 5:1 bandwidth(100${\sim}$500 MHz), which consists of a dipole antenna and a P-HEMT amplifier. To obtain required performances, the antenna and the amplifier should be designed simultaneously. In order for that, we introduced an equivalent port concept to model the 1-port dipole antenna as an equivalent 2-port system. Using the proposed equivalent port, the performance of the active dipole antenna was simulated by the ADS. In order to measure the gain and noise-figure characteristics of the antenna, we utilized the same concept of the two-port equivalent impedance model. The measurement results for typical gain, NF and VSWR in the required frequency band were 8dBi, 9dB and 1.7:1, respectively. The radiation patterns at the principal planes were same as the typical radiation pattern of a dipole antenna. By comparing the simulation results with measured ones, it is confirmed that the proposed methods works well.

Design for Isolation Improvement between 2-Channel WiBro-MIMO and PCS Band Antenna (2-CH WiBro Band MIMO 안테나와 PCS 안테나 간의 격리도 향상을 위한 설계)

  • Kim, Min-Seong;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 2008
  • This paper presents to improve of isolation characteristics between personal communication service(PCS) antenna In mobile terminal and 2-channel multi input multi output(MIMO) antenna in the wireless broadband Internet(WiBro) band. In order to improve the isolation between each channel antenna, the proposed PCS antenna with an air space of 3 mm height is located on the projected ground plane($25{\times}12mm$) which is very small space$(0.19{\lambda})$ between the 2-channel WiBro-MIMO antenna. The proposed PCS antenna structure is a modified planar inverted F antenna (PIFA) of spiral type with shorting strip line(6${\times}$4 mm). The calculated Isolation values between the proposed PIFA with 3-dimensional structure and the MIMO antenna at Wibro band are about -20dB below and agree well with the measurement. Measured return loss, bandwidth, and gain o# the proposed antenna are -20dB at 1.8GHz, 110MHz(1.76${\sim}$1.87 GHz) band at -10dB below, and 0.05dBi, respectively, Moreover, we confirm that the proposed PCS antenna has no influence on performance and characteristics of the conversional 2-channel WiBro-MIMO antenna.

Measurements of Fast Transient Voltages due to Human Electrostatic Discharges (인체에 대전된 정전기 방전에 의해 발생한 급속과도전압의 측정)

  • 이복희;이동문;강성만;엄주홍;이태룡;이승칠
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.108-116
    • /
    • 2002
  • This paper presents the measurements and evaluation of voltage waveforms due to human electrostatic discharge(ESD). The principle of operation and design rule of a new device for measuring the ESD fast transient voltages with very fast rise time were described. Peak values and rise time of ESD voltages derived from a charged human body under a variety of experimental conditions were examined. The frequency bandwidth of the proposed voltage measuring system ranges from DC to 400[㎒]. The ESD voltage waveform is nearly equal to the ESD current waveform and the peak amplitude of ESD current waveform is roughly proportional to the ESD voltage in each experimental conditions. A rapid approach results in a discharge voltage with a faster initial rise time than for a slow approach. The voltages caused by direct finger ESDs have an initial slope with a relatively long, 10∼30[ns] rise time, but the amplitude is small. On the other hand, the voltages caused by direct hand/metal ESDs have a steep initial s1ope with 1 ∼3[ns] rise time, but an initial spike is very big. As a consequence, it was found that the ESD voltage and current waveforms strongly depend on the approach speed and material of intruder. These measurement results would be useful to design the ESD protective devices.

Wave and surface current measurement with HF radar in the central east coast of Korea (동해중부에서 HF Radar를 이용한 파랑 및 해수유동 관측)

  • Kim, Moo-Hong;Kim, Gyung-Soo;Kim, Hyeon-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.771-780
    • /
    • 2014
  • We installed HF Radar of Array type in Site A and Site B, observing the real-time wave and current in the central East coast of Korea. WERA(WavE RAdar) in this research uses HF Radar of Array Type with frequency range of 24.525 MHz, developed by Helzel, Germany. Each site is a 8-Channel system consisting of four transmitters and eight receivers, generating wave and current data, being observed every thirty minutes at the present time. HF Radar has grid resolution of an interval of 1.5 km using bandwidth of 150 kHz; The wave data covers an observation range of about 25 km, and the current data covers the maximum observation range of about 50 km. The Wave data observed by HF Radar was compared and verified with the AWAC data observed in the research sites. MIT also compared the Current data observed by HF Radar with Monthly the East sea average surface current and current flow pattern provided by KOHA(Korea Hydrographic and oceanographic Administration). The regression line and deviation of the comparison data of Wave was calculated by Principal Component Analysis, which showed correlation coefficient 0.86 and RMSD 0.186. Besides, data analysis of long-term changes of the current in the East coast showed that, during August and September, the North Korean Cold Current flow into the southward direction and the East Korean Warm Current flow into the northward direction in the coast.

SIMULTANEOUS OBSERVATIONS OF PI 2 PULSATIONS ON THE SATELLITE AND GROUND-BASED MEASUREMENTS (위성 및 지상자력계에서의 PI 2 파동 동시 관측)

  • 이성환;이동훈;김관혁
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.275-285
    • /
    • 1997
  • We have investigated Pi 2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, Pi 2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI) were located near the magnetic meridian of the 210 array. The local time of measurements covers from morning(LT=8.47hr) to afternoon(LT=20.3hr) and the bandwidth of peak frequency is found relatively small. The signals of the electric field are highly coherent with ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60) shows no signature of Pi 2 pulsations over the same time interval and the correlation with any of the ground-based stations is found to be very weak, even through both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi 2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996). The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  • PDF

An Experimental Study on the Fire Monitoring System for Tunnel Using SMA and Fiber Optic Cable (형상기억합금과 광케이블을 이용한 터널의 화재감지 시스템 개발에 관한 실험적 연구)

  • Hwang, Ji-Hyun;Park, Ki-Tae;Lee, Kyu-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.128-134
    • /
    • 2014
  • Recently, design and construction of street tunnels tend to focus on cost reduction and preservation of nature. Accordingly, research is actively being carried out to quickly detect fires when they occur in tunnels, which have partially closed structures. Among such research, fire detection methods using optical fiber sensors have a wide bandwidth and fast transmission speed, while using light as a medium. Therefore, it does not receive electrical interference and there is almost no loss of information during transmission, while also having little noise as well. In relation to this, a fire monitoring system that can accurately detect the location of fires in real time using shape memory alloy and optical cables was developed in this study. In order to verify the developed method, light loss measurement test was conducted according to indoor temperature changes, while also conducting fire simulation tests by installing test beds in common underground zones with different external environments of temperature and distance. Upon carrying out experiments, the fire monitoring system developed in this study was found to be able to detect fires in long distance sections in real time.

Hemisphere Type Lunegerg Lens Antenna with a Reflector (반사판 부착 반구형 르네베르그렌즈 안테나)

    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.1006-1014
    • /
    • 2000
  • Hemisphere type Luneberg lens antenna with a reflector(frequency : 9.375 GHz, -3 dB beam width 6$^{\circ}$, diameter 30.3 cm(about 10 A), which is miniaturized and lightweightized by attaching a reflector on a section of half the Luneberg lens antenna, is designed and fabricated on the basis of Luneberg lens antenna from which easy beam pointing is acquired only by movement of 1st radiator. Measurement shows -3dB beamwidth is 6.1$^{\circ}$ in case of E-plane and 5.5$^{\circ}$ in case of H-plane. These are good agreements with expected value. Gain of this antenna is 26dBi(Aperture efficiency for uniform distribution : $\pi$ = 44.97%) which is greater than that of 1st radiator(Rectangular microstrip antenna) by 20.4 dB. And, after calculating the approximated pattern of the 1st radiator, far-field pattern, whose source is the second aperture source farmed from the approximated pattern of the 1st radiator is computed. Comparing this far-field pattern with the expected pattern, a (relatively) good agreement is observed. Circular polarization Luneberg lens antenna is also manufactured by making 1st radiator so that it has the characteristics of LHCP and RHCP radiation. The results are as followings : -3 dB beamwidth 5.8$^{\circ}$ , side lobe level -15.3 dB, isolation between LHCP and RHCP radiation 2543, axial ratio 2 dB bandwidth about 1.4 GHz(14.9%).

  • PDF

Proposition of a Vibration Based Acceleration Sensor for the Fully Implantable Hearing Aid (완전 이식형 보청기를 위한 진동 기반의 가속도 센서 제안)

  • Shin, Dong Ho;Mun, H.J.;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.133-141
    • /
    • 2017
  • The hybrid acoustic sensor for implantable hearing aid has the structure in which a sound pressure based acoustic sensor (ECM) and a vibration based acceleration sensor are combined. This sensor combines the low frequency sensitivity of an acoustic sensor with the high frequency sensitivity of an acceleration sensor, allowing the acquisition of a wide range of sound from low to high frequency. In this paper, an acceleration sensor for use in a hybrid acoustic sensor has been proposed. The acceleration sensor captures the vibration of the tympanic membrane generated by the acoustic signal. The size of the proposed acceleration sensor was determined to diameter of 3.2 mm considering the anatomical structure of the tympanic membrane and the standard of ECM. In order to make the hybrid acoustic sensor have high sensitivity and wide bandwidth characteristics, the aim of the resonance frequency of the acceleration sensor is to be generated at about 3.5 kHz. The membrane of the acceleration sensor derives geometric structure through mathematical model and finite element analysis. Based on the analysis results, the membrane was implemented through a chemical etching process. In order to verify the frequency characteristics of the implemented membrane, vibration measurement experiment using external force was performed. The experiment results showed mechanical resonance of the membrane occurred at 3.4 kHz. Therefore, it is considered that the proposed acceleration sensor can be utilized for a hybrid acoustic sensor.

Analysis and Measurement of the Magnetic Fields Cause by Operation of Electromotive Installations (전동력설비의 운전에 의해 발생되는 자계의 측정과 해석)

  • 이복희;길경석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.2
    • /
    • pp.58-67
    • /
    • 1995
  • The paper describes the variation of magnetic fields caused by the operation of induction motors. The measuring system consists of the self-integrating magnetic field sensor, amplifier, and active integrator. From the calibration experiments, the frequency bandwidth of the magnetic field measuring system ranges from 20[Hz] to 300[kHz] and sensitivity is 0.234(mV/$\mu\textrm{T}$]. The magnetic fields generated under steady state and starting operations of duction motor are recorded by the proposed measuring system, and the fast Fourier transformation(FFT) of the measured data is performed to analyze the harmonic components. A single pulsed magnetic field is strongly caused by direct starting the induction motor, and its peak value is greater than 5 times as compared with the steady state value. The long transient duration and high intensity originates from the large inductance and dynamic characteristic of the induction motor, During the steady state operation of induction motor, subharmonics of magnetic field components, which depend on the pole number of induction motor, are observed. The lower order power-line harmonics can be inferred from the voltage flicker and current ripple which are derived from the torque fluctuation of induction motor. In the case of the induction motor drived by inverter, the harmonics of magnetic field are much more than those caused by direct starting method and are found generally to increase with decreasing the driving frequency.

  • PDF