• Title/Summary/Keyword: Bandwidth measurement

Search Result 578, Processing Time 0.028 seconds

Comparison of IIR Filter and Wavelet Filter on Acoustic Decay Measurements (음 감쇠 측정에서의 IIR 필터와 웨이블렛 필터의 영향에 대한 수치 계산, 비교)

  • 이상권;이민성;김봉기
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.5-13
    • /
    • 2001
  • It is well known that there are two experimental errors on acoustic decay measurements. ,One is due to the influence of the band pass filter the other one is that of an averaging device. In this paper the influence of the filter is investigated in detail. To minimize the influence of the filter, the product of the filter bandwidth B (3dB bandwidth) and the reverberation time T/sub 60/ of the room under test should be at least 16. Moreover, if the initial part of an acoustic decay curve is important, the strong requirement, i. e. BT/sub 60/〉64, must be satisfied. In this paper, the wavelet filter bank instead of the band pass filter bank is applied to obtain an acoustic decay curve. As a result, the influence of filter is reduced and then the value of BT/sub 60/ required for obtaining an acceptable decay curve becomes at least 4. The strong requirement for the initial part of a decay curve is also replaced by the BT/sub 60/〉16 instead of BT/sub 60/〉64.

  • PDF

Bandwidth Enhancement for the GPS Patch Antenna Using the Quadrature Hybrid Chip Circuit (90도 하이브리드 칩 회로를 이용한 GPS용 패치안테나의 광대역화)

  • Son, Taeho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.765-768
    • /
    • 2015
  • In this paper, two ports feeding a microstrip patch antenna using a quadrature hybrid circuit was proposed to enhance the bandwidth for the global positioning system(GPS). The square patch was designed, and the probe feeding was applied. The quadrature hybrid chip circuit for two-port feeding was designed, and output ports that have a 90-degree phase difference feed to the patch antenna. The designed patch and quadrature hybrid circuit were implemented on an FR4 board, and were combined. The measurement of the bandwidth within a voltage standing wave ratio(VSWR) of 2: 1 and axial ratio(AR) in 3dB were 29 %BW(1,230~1,700 MHz) and 15.87 %BW(1,400~1,650 MHz), respectively. The peak gain at the GPS center frequency was measured at 2.75 dBi in an anechoic chamber.

A Statistical Model for the Ultra-Wide Bandwidth Indoor Apartment Channel (실내 아파트 환경에서의 통계적 UWB 채널 모델)

  • Park Jin-Hwan;Lee Sang-Hyup;Bang Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.19-28
    • /
    • 2005
  • We establish a statistical model for the ultra-wide bandwidth (UMB) indoor channel based on over 2000 frequency response measurements campaign in a Practical apartment. The approach is based on the investigation of the statistical properties of the multipath profiles measured in different place with different rooms. Based on the experimental results, a characterization of the propagation channel from theoretic view point is described. Also we describe a method for measurement of the channel impulse response and channel transfer function. Using the measured data, the authors compares channel impulse responses obtained from time-domain and channel transfer functions obtained from frequency-domain with statistical path loss model. The bandwidth of the signal used in this experiment is from 10MHz to 8.01 GHz. The time-domain results such as maximum excess delay, men excess delay and ms delay spread are presented. As well as, omni-directional biconical antenna were used for transmitter and receiver In addition, measurements presented here support m channel model including the antenna characteristics.

Design of Singly Fed Microstrip Antennas Having Circular Polarization (단일 급전 원형 편파 마이크로스트립 안테나 설계)

  • 오세창;전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.998-1009
    • /
    • 1999
  • In this paper, a microstrip aperture-patch antenna and a microstrip ring antenna, which have single microstrip line feeding systems for the circular polarization, are designed, and experimental results are presented at X-band. The microstrip aperture-patch antenna is characterized by its wide operating frequency range, and the microstrip ring antenna is suitable for a basic radiator in the large array antenna due to its small size. Several design parameters for these antennas are considered and analyzed to improve antenna characteristics such as VSWR bandwidth and axial ratio. Initially, the sizes of the aperture and ring radiator are determined on a basis of the cavity model, then shapes of the patch within the aperture and the inner stub of the ring are optimized using Ensemble software. Measurement results show that the aperture-patch antenna has 25% of VSWR bandwidth and 1.2dB of axial ratio at the boresight, and the ring antenna has 6.7% of VSWR bandwidth and 1.6dB of axial ratio at the boresight.

  • PDF

Design of Dual-Band Monopole Antenna Fed-by CPW Using Asymmetric Ground Plane (CPW 급전 비대칭 접지면을 이용한 이중 대역 모노폴 안테나 설계)

  • Lee, Sang-Min;Kim, Nam;Lee, Seung-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.778-785
    • /
    • 2010
  • The folded monopole antenna for applying mobile communications equipment and wireless devices is presented in this paper. By using the coplanar waveguide feed the operating bandwidth has improved. In addition, each individual resonant elements has occurred different capacitance through asymmetrical left and right ground planes; therefore, the bandwidth has kept and the impedance matching has stabilized. By measurement results, the impedance bandwidth under VSWR< 2.5:1 are $824{\sim}890$ MHz and the $1,500{\sim}2,170$ MHz, also radiation patterns has omni-directional characteristics. The maximum gains of the proposed antenna are 5.52, 0.64, 3.00, 0.94 and 1.85 dBi at 850, 1,575, 1,790, 1,930 and 2,050 MHz respectively. The proposed antenna will be adapted to the internal antenna of the mobile communication devices.

On-chip Power Supply Noise Measurement Circuit with 2.06mV/count Resolution (2.06mV/count의 해상도를 갖는 칩 내부 전원전압 잡음 측정회로)

  • Lee, Ho-Kyu;Jung, Sang-Don;Kim, Chul-Woo
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.9-14
    • /
    • 2009
  • This paper describes measurement of an on-ship power supply noise in mixed-signal integrated circuits. To measure the on-chip power supply noise, we can check the effects of analog circuits and compensate it. This circuit consists of two independent measurement channels, each consisting of a sample and hold circuit and a frequency to digital converter which has a buffer and voltage controlled oscillator(VCO). The time-based voltage information and frequency-based power spectrum density(PSD) can be achieved by a simple analog to digital conversion scheme. The buffer works like a unit-gain buffer with a wide bandwidth and VCO has a high gain to improve resolution. This circuit was fabricated in a 0.18um CMOS technology and has 2.06mV/count. The noise measurement circuit consumes 15mW and occupies $0.768mm^2$.

  • PDF

Design of Wideband RF Frequency Measurement System with EP2AGX FPGA (EP2AGX FPGA를 이용한 광대역 고주파신호의 주파수 측정장치 설계)

  • Lim, Joong-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.1-6
    • /
    • 2017
  • This paper presents the design of a frequency measurement device using ADC, EP2AGX FPGA and STM32 processor to accurately measure the frequency of a broadband high frequency signal. The ADC device used in this paper has a sampling frequency of 250 MSPS and a processing frequency bandwidth of 100 MHz. Due to its high sampling frequency, it is difficult to process in ordinary computers or processors, so we implemented the frequency measurement algorithm using the Altra EP2AGX FPGA. The measured frequency is sent to the direction detection controller in real time and fused with the phase signal to calculate the incident azimuth angle of the high frequency signal. The designed frequency measurement device is about 0.2 Mhz in frequency measurement error and 30% less than Anaren DFD-x, which is considered to contribute greatly to the design of radio monitoring and direction detection device.

IP Voltage Controller of Three-phase PWM Converter for Power Supply of Communication System (IP 제어기를 이용한 통신 전원용 3상 PWM 컨버터의 전압 제어)

  • Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2722-2728
    • /
    • 2011
  • 3Phase PWM rectifier has become increasingly popular due to its capability of nearly sinusoidal waveform of the input current, and nearly unity power factor operation as a AC/DC rectifier of high capacity telecommunication power supply system. Generally, PI controller is used as a voltage controller of PWM rectifier and voltage controller must be designed to have low overshoot in transient state to get a reliability and stable operation. However, in the application of telecommunication in which load condition is varied very fast, the voltage controller must have a large bandwidth to reduce output voltage variation. The PI controller with large bandwidth arouse the excessive overshoot of the output voltage, and this large output voltage variation degrades the reliability of communication power of the three-phase PWM Rectifier. In this paper, new IP voltage controller for 3 phase PWM rectifier is proposed which has relatively low transient output voltage variation. The improved output characteristics of the transient state voltage responses of the starting and at load changes of the proposed voltage controller are proved by simulations and experiments.

Underwater Channel Environment Analysis Using 10Khz Carrier Frequency at the Shore of West Sea (10kHz 반송파를 사용한 서해안 수중 채널환경 분석)

  • Kim, Min-sang;Ko, Hak-lim;Kim, Kye-won;Lee, Tae-seok;Im, Tae-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.132-139
    • /
    • 2016
  • This study was carried out near the waters of Jango port, Dangjin-gun, Chungcheongnam-do by utilizing 10kHz carrier frequency, for the purpose of measurement and analysis of underwater channel environment of the Western sea. For the measurement of horizontal channel environment, the separation distance between transmitter and receiver is made differently in the range between 10m and 4000m. Meanwhile, for the measurement of vertical channel environment, transmission and receiving side ships are fixed as contacted each other and measured differently depending on their depth of submergence. In this study, the Coherence Bandwidth and the Coherence Time were estimated by analyzing the Power delay profile of the real sea based on the measured data, and analyzing the doppler frequency through frequency conversion of received tone-signal, respectively. This study is expected to become a base study in carrying out the frame design for underwater communication to improve the communication and secure the reliability of communication in future underwater channel environment.

A Novel Calibration Method Research of the Scale Factor for the All-optical Atomic Spin Inertial Measurement Device

  • Zou, Sheng;Zhang, Hong;Chen, Xi-yuan;Chen, Yao;Fang, Jian-cheng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.415-420
    • /
    • 2015
  • A novel method to measure the scale factor for the all-optical atomic spin inertial measurement device (ASIMD) is demonstrated in this paper. The method can realize the calibration of the scale factor by a self-consistent method with small errors in the quiescent state. At first, the matured IMU (inertial measurement unit) device was fixed on an optical platform together with the ASIMD, and it has been used to calibrate the scale factor for the ASIMD. The results show that there were some errors causing the inaccuracy of the experiment. By the comparative analysis of theory and experiment, the ASIMD was unable to keep pace with the IMU. Considering the characteristics of the ASIMD, the mismatch between the driven frequency of the optical platform and the bandwidth of the ASIMD was the major reason. An all-optical atomic spin magnetometer was set up at first. The sensitivity of the magnetometer is ultra-high, and it can be used to detect the magnetization of spin-polarized noble gas. The gyromagnetic ratio of the noble gas is a physical constant, and it has already been measured accurately. So a novel calibration method for scale factor based on the gyromagnetic ratio has been presented. The relevant theoretical analysis and experiments have been implemented. The results showed that the scale factor of the device was $7.272V/^{\circ}/s$ by multi-group experiments with the maximum error value 0.49%.