• 제목/요약/키워드: Bandgap energy

검색결과 205건 처리시간 0.031초

Rubrene:CuPc 정공 수송층이 도입된 p-i-n형 유기 박막 태양전지의 성능 특성 연구 (Performance Characteristics of p-i-n type Organic Thin-film Photovoltaic Cell with Rubrene:CuPc Hole Transport Layer)

  • 강학수;황종원;강용수;이혜현;최영선
    • Korean Chemical Engineering Research
    • /
    • 제48권5호
    • /
    • pp.654-659
    • /
    • 2010
  • 박막형 유기 태양전지의 효율 향상을 위하여 정공 수송층인 CuPc 층에 p형 유기 반도체인 rubrene을 함량 별로 도핑하여 ITO/PEDOT:PSS/CuPc: rubrene/CuPc:C60(blending ratio 1:1)/C60/BCP/Al의 이종접합구조를 가지는 p-i-n형 유기 박막형 태양전지 소자를 제조한 후, 유기 태양전지의 전류 밀도-전압(J-V) 특성, 단락 전류($J_{sc}$), 개방 전압($V_{oc}$), 충진 인자(fill factor:FF), 에너지 전환 효율(${\eta}_e$) 등을 측정하고 계산하여 성능 평가를 수행 하였다. 정공 수송층으로 사용된 CuPc 층에 rubrene을 도핑함으로써 에너지 흡수 스펙트럼에서 흡수 강도가 감소하였다. 그러나 CuPc 보다 큰 밴드갭을 가지며 높은 정공 이동도를 가지는 결정성 rubrene의 도핑에 의해 제조된 p-i-n형 유기 박막 태양전지의 성능은 향상 되는 것으로 확인되었다. 제조된 유기 태양전지의 에너지 전환 효율(${\eta}_e$)은 1.41%로 실리콘 태양전지와 비교해서 아직도 성능 향상을 위한 많은 노력이 필요함을 보여 준다.

초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질 (Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation)

  • 김정현;류철희;지명준;최요민;이영인
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.143-149
    • /
    • 2021
  • In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정 (Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells)

  • 박진호;;;박준영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Dry Etching of $Al_2O_3$ Thin Film in Inductively Coupled Plasma

  • Xue, Yang;Um, Doo-Seung;Kim, Chang-Il
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.67-67
    • /
    • 2009
  • Due to the scaling down of the dielectrics thickness, the leakage currents arising from electron tunneling through the dielectrics has become the major technical barrier. Thus, much works has focused on the development of high k dielectrics in both cases of memories and CMOS fields. Among the high-k materials, $Al_2O_3$ considered as good candidate has been attracting much attentions, which own some good properties as high dielectric constant k value (~9), a high bandgap (~2eV) and elevated crystallization temperature, etc. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of BClxOy compound. In this study, the etch characteristic of ALD deposited $Al_2O_3$ thin film was investigated in $BCl_3/N_2$ plasma. The experiment were performed by comparing etch rates and selectivity of $Al_2O_3$ over $SiO_2$ as functions of the input plasma parameters such as gas mixing ratio, DC-bias voltage and RF power and process pressure. The maximum etch rate was obtained under 15 mTorr process perssure, 700 W RF power, $BCl_3$(6 sccm)/$N_2$(14 sccm) plasma, and the highest etch selectivity was 1.9. We used the x-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. The Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF

Poly-4-vinylphenol and Poly (melamine-co-formaldehyde)-based Tungsten Diselenide (WSe2) Doping Method

  • Nam, Hyo-Jik;Park, Hyung-Youl;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.194.1-194.1
    • /
    • 2015
  • Transition metal dichalcogenide (TMD) with layered structure, has recently been considered as promising candidate for next-generation flexible electronic and optoelectronic devices because of its superior electrical, optical, and mechanical properties.[1] Scalability of thickness down to a monolayer and van der Waals expitaxial structure without surface dangling bonds (consequently, native oxides) make TMD-based thin film transistors (TFTs) that are immune to the short channel effect (SCE) and provide very high field effect mobility (${\sim}200cm^2/V-sec$ that is comparable to the universal mobility of Si), respectively.[2] In addition, an excellent photo-detector with a wide spectral range from ultraviolet (UV) to close infrared (IR) is achievable with using $WSe_2$, since its energy bandgap varies between 1.2 eV (bulk) and 1.8 eV (monolayer), depending on layer thickness.[3] However, one of the critical issues that hinders the successful integration of $WSe_2$ electronic and optoelectronic devices is the lack of a reliable and controllable doping method. Such a component is essential for inducing a shift in the Fermi level, which subsequently enables wide modulations of its electrical and optical properties. In this work, we demonstrate n-doping method for $WSe_2$ on poly-4-vinylphenol and poly (melamine-co-formaldehyde) (PVP/PMF) insulating layer and adjust the doping level of $WSe_2$ by controlling concentration of PMF in the PVP/PMF layer. We investigated the doping of $WSe_2$ by PVP/PMF layer in terms of electronic and optoelectronic devices using Raman spectroscopy, electrical measurements, and optical measurements.

  • PDF

다양한 온도에서 열처리한 씨앗 층 위에 열수화법을 이용한 ZnO 나노 막대의 성장

  • 배영숙;김영이;김동찬;공보현;안철현;최미경;우창호;한원석;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.433-433
    • /
    • 2009
  • ZnO-based materials have been extensively studied for optoelectronic applications due to their superiors physical properties such as wide direct bandgap (~3.37 eV), large exciton binding energy (~60 meV), high transparency in the visible region, and low cost. Especially, one-dimensional (1D) ZnO nanostructures have attracted considerable attention owing to quantum confinement effect and high crystalline quality. Additionally, various nanostructures of ZnO such as nanorods, nanowires, nanoflower, and nanotubes have stimulated the interests because of their semiconducting. and piezoelectric properties. Among them, vertically aligned ZnO nanorods can bring the improved performance in various promising photoelectric fields including piezo-nanogenerators, UV lasers, dye sensitized solar cells, and photo-catalysis. In this work, we studied the effect of the annealing temperature of homo seed layers on the formation of ZnO nanorods grown by hydrothermal method. The effect of annealing temperature of seed layer on the length and orientation of the nanorods was investigated scanning electron microscopy investigation. Transmission electron microscopy and X-ray diffraction measurement were performed to understand the effect of annealing temperatures of seed layers on the formation of nanorods. Moreover, the optical properties of the seed layers and the nanorods were studied by room temperature photoluminescence.

  • PDF

폴리머 기판상의 Al-doped ZnO 박막의 두께에 따른 특성 변화 (Thickness Dependance of Al-doped ZnO Thin Film on Polymer Substrate)

  • 김봉석;김응권;강현일;이규일;이태용;송준태
    • 한국진공학회지
    • /
    • 제16권2호
    • /
    • pp.105-109
    • /
    • 2007
  • 본 논문에서는 AZO 박막 두께 변화에 따른 구조적, 전기적, 광학적 특성의 영향에 대하여 연구하기 위하여 폴리카보네이트(PC : polycarbonate) 기판 위에 DC 스퍼터링법으로 증착시간을 변화시켜 박막의 두께를 조절하였다. 박막의 두께는 100 nm에서 500 nm까지 100 nm단위로 실험하였으며, 제작된 AZO 박막의 비저항 특성은 four point probe system를 이용하여 측정하였고, 박막의 입자크기, 표면상태를 Environment Secondary Electron Microscopy (ESEM)으로 관찰하였다. 또한 AZO 박막의 결정상태를 조사하기 위하여 High Resolution X-Ray Diffractometer (HR-XRD)를 이용하였고 광학적 투과도는 UV-visible spectrophotometer를 이용하여 분석하였다. 실험 결과 모든 박막에서 90% 이상의 광투과도를 보였으며 400 nm과 500 nm 두께의 AZO 박막에서는 $4.5{\times}10^{-3}\;{\Omega}-cm$의 비저항과 3.61 eV의 광밴드갭 에너지를 보였다.

Cd-free 태양전지를 위한 ZnS/CIGS 이종접합 특성 향상 연구 (Study of ZnS/CIGS Hetero-interface for Cd-free CIGS Solar Cells)

  • 신동협;김지혜;고영민;윤재호;안병태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.106.1-106.1
    • /
    • 2011
  • The Cu(In,Ga)Se2 (CIGS) thin film solar cells have been achieved until almost 20% efficiency by NREL. These solar cells include chemically deposited CdS as buffer layer between CIGS absorber layer and ZnO window layer. Although CIGS solar cells with CdS buffer layer show excellent performance, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. Among Cd-free candidate materials, the CIGS thin film solar cells with ZnS buffer layer seem to be promising with 17.2%(module by showa shell K.K.), 18.6%(small area by NREL). However, ZnS/CIGS solar cells still show lower performance than CdS/CIGS solar cells. There are several reported reasons to reduce the efficiency of ZnS/CIGS solar cells. Nakada reported ZnS thin film had many defects such as stacking faults, pin-holes, so that crytallinity of ZnS thin film is poor, compared to CdS thin film. Additionally, it was known that the hetero-interface between ZnS and CIGS layer made unfavorable band alignment. The unfavorable band alignment hinders electron transport at the heteo-interface. In this study, we focused on growing defect-free ZnS thin film and for favorable band alignment of ZnS/CIGS, bandgap of ZnS and CIGS, valece band structure of ZnS/CIGS were modified. Finally, we verified the photovoltaic properties of ZnS/CIGS solar cells.

  • PDF

Influence of Charge Transport of Pt-CdSe-Pt Nanodumbbells and Pt Nanoparticles/GaN on Catalytic Activity of CO Oxidation

  • Kim, Sun Mi;Lee, Seon Joo;Kim, Seunghyun;Kwon, Sangku;Yee, Kiju;Song, Hyunjoon;Somorjai, Gabor A.;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.164-164
    • /
    • 2013
  • Among multicomponent nanostructures, hybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. In this study, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibited a higher turnover frequency by a factor of two during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles didn't depend on light irradiation. We also found that Pt nanoparticles deposited on a GaN substrate under light irradiation exhibit changes in catalytic activity of CO oxidation that depends on the type of doping of the GaN. We suppose that hot electrons are generated upon the absorption of photons by the semiconducting nanorods or substrates, whereafter the hot electrons are injected into the Pt nanoparticles, resulting in the change in catalytic activity. We discuss the possible mechanism for how hot carrier flows generated during light irradiation affect the catalytic activity of CO oxidation.

  • PDF

Composition Dependence on Structural and Optical Properties of MgxZn1-xO Thin Films Prepared by Sol-Gel Method

  • Kim, Min-Su;Noh, Keun-Tae;Yim, Kwang-Gug;Kim, So-A-Ram;Nam, Gi-Woong;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3453-3458
    • /
    • 2011
  • The $Mg_xZn_{1-x}O$ thin films with the various content ratio ranging from 0 to 0.4 were prepared by sol-gel spincoating method. To investigate the effects of content ratio on the structural and optical properties of the $Mg_xZn_{1-x}O$ thin films, scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out. With increase in the content ratio, the grain size of the $Mg_xZn_{1-x}O$ thin films was increased, however, at the content ratio above 0.2, MgO particles with cubic structure were formed on the surface of the $Mg_xZn_{1-x}O$ thin films, indicating that the Mg content exceeded its solubility limit in the thin films. The residual stress of the $Mg_xZn_{1-x}O$ thin films is increased with increase in the Mg mole fraction. In the PL investigations, the bandgap and the activation energy of the $Mg_xZn_{1-x}O$ thin films was increased with the Mg mole fraction.