• Title/Summary/Keyword: Bandgap energy

Search Result 207, Processing Time 0.033 seconds

산화아연 나노로드 기반의 피에조 나노발전소자 향상을 위한 상부 전극 제작

  • Go, Yeong-Hwan;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.283.1-283.1
    • /
    • 2014
  • 최근 주위 환경에 존재하는 다양한 에너지를 전기에너지로 회수 또는 수확하는 에너지 하베스팅 기술(energy harvesting technology)이 크게 주목을 받고 있으며, 이와 더불어 압전 나노발전소자(piezoelectric nanogenerator)의 연구가 활발해 진행되고 있다. 한편, 수열합성법 또는 전기화학증착법을 이용하여 비교적 간단하게 수직으로 성장된 산화아연 나노로드(ZnO nanorod)는 광대역 에너지 밴드갭(wide bandgap energy)과 압전(piezoelectric)특성을 갖게 된다. 이렇게 수직 정렬된 나노로드의 기하학적 구조는 외부 물리적인 힘에 의해 구부러짐(bending) 변형이 일어나 압전특성이 효과적으로 일어나며, 이런 현상을 이용하여 압전 나노발전소자에 응용할 수 있다. 본 연구에서는 상부의 전극의 표면 거칠기(surface roughness)를 증가시켜 외부 힘에 의해 산화아연 나노로드가 효과적으로 변형을 일으켜 압전 특성을 향상시켰다. 실험을 위해, 산화아연 마이크로로드 어레이 (microrod arrays)와 실리카 마이크로스피어(silica microsphere)를 각각 템플릿으로 이용하여 그 위에 금(Au)를 증착하여 상부전극을 제작하였다. 산화아연 나노로드와 마이크로로드는 전기화학증착법을 이용해서 저온공정($75^{\circ}C$)으로 ITO가 코팅된 PET 기판위에 성장하였으며, 인가된 전압의 세기를 변화시켜 산하아연 구조물의 크기를 조절하였다. 또한 화합합성법으로 실리카 마이크로 스피어를 준비하였다. 이러게 제작된 상부전극을 통해 기존의 사용되었던 전극과 비교하여 성능이 향상됨을 확인하였으며, 이와 함께 이론적인 분석을 진행하였다.

  • PDF

The Characteristics Study of Photoreflectance of $\textrm{In}_{0.1}\textrm{Ga}_{0.1}\textrm{As}$ Epi-layer Grwon by Molecular BEAM Epitaxy (MBE로 성장시킨 $\textrm{In}_{0.1}\textrm{Ga}_{0.1}\textrm{As}$에피층의 Photoreflectance 특성 연구)

  • Lee, Dong-Yul;Yu, Jae-In;Son, Jeong-Sik;Kim, Gi-Hong;Lee, Dong-Geon;Lee, Jeong-Yeol;Bae, In-Ho;Son, Yeong-Ho;Hwang, Do-Eon
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.515-519
    • /
    • 1999
  • We have investigated the photoreflectance characteristics for In\ulcornerGaAs/GaAs heterojunction structure grown by molecular beam epitaxy (MBE). The E\ulcorner bandgap energy of In\ulcornerGa\ulcornerAs at room temperature was observed at about 1.3 eV. From this result, the indium composition x value was calculated. The shoulder peaks were observed higher than E\ulcorner peaks, and peak positions were shifted toward 12 meV to 70 meV higher energy with increasing doping concentrations. The shoulder peaks can be observed by In segregation and re-evaporation. However, we think that indium re-evaporation cause th shift of shoulder peaks after epilayer growth.

  • PDF

Quantum Confinement of Exfoliated Organic-Inorganic Hybrid Perovskite Nanocrystals (유무기 페로브스카이트 나노결정의 박리화에 의한 양자구속효과)

  • Choe, Hyeon Jeong;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.496-501
    • /
    • 2021
  • Metal halide perovskite nanocrystals, due to their high absorption coefficient, high diffusion length, and photoluminescence quantum yield, have received significant attention in the fields of optoelectronic applications such as highly efficient photovoltaic cells and narrow-line-width light emitting diodes. Their energy band structure can be controlled via chemical exchange of the halide anion or monovalent cations in the perovskite nanocrystals. Recently, it has been demonstrated that chemical exfoliation of the halide perovskite crystal structure can be achieved by addition of organic ligands such as n-octylamine during the synthetic process. In this study, we systematically investigated the quantum confinement effect of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanocrystals by precise control of the crystal thickness via chemical exfoliation using n-octylammonium bromide (OABr). We found that the crystalline thickness consistently decreases with increasing amounts of OABr, which has a larger ionic radius than that of CH3NH3+ ions. In particular, a significant quantum confinement effect is observed when the amounts of OABr are higher than 60 %, which exhibited a blue-shifted PL emission (~ 100 nm) as well as an increase of energy bandgap (~ 1.53 eV).

Theoretical Studies on the Electrical Characteristics of the Anthocyanin Derivatives (안토시아닌 유도체의 전기적 특성에 대한 이론적 연구)

  • Lee, Chul Jae;Choi, Jeong-Won;Jang, WoonGeun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.343-348
    • /
    • 2018
  • Anthocyanin derivatives are an important of natural compounds responsible for the red, purple and blue colors in a large number of plants. This molecules are polymethoxy-derivatives of 2-phenylbenzopyrylium salts. Despite the beneficial properties of anthocyanins, the effectiveness of preventing or treating various diseases depends on bioavailability. Therefore, In this study, in order to investigate the electrical characteristics of anthocyanin derivatives, we investigated the electrochemical properties of derivatives by calculating the total energy, bandgap, net charge of anthocyanin derivatives using HyperChem8.0's PM3 method.

Effect of Oxygen and Diborane Gas Ratio on P-type Amorphous Silicon Oxide films and Its Application to Amorphous Silicon Solar Cells

  • Park, Jin-Joo;Kim, Young-Kuk;Lee, Sun-Wha;Lee, Youn-Jung;Yi, Jun-Sin;Hussain, Shahzada Qamar;Balaji, Nagarajan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.192-195
    • /
    • 2012
  • We reported diborane ($B_2H_6$) doped wide bandgap hydrogenated amorphous silicon oxide (p-type a-SiOx:H) films prepared by using silane ($SiH_4$) hydrogen ($H_2$) and nitrous oxide ($N_2O$) in a radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) system. We improved the $E_{opt}$ and conductivity of p-type a-SiOx:H films with various $N_2O$ and $B_2H_6$ ratios and applied those films in regards to the a-Si thin film solar cells. For the single layer p-type a-SiOx:H films, we achieved an optical band gap energy ($E_{opt}$) of 1.91 and 1.99 eV, electrical conductivity of approximately $10^{-7}$ S/cm and activation energy ($E_a$) of 0.57 to 0.52 eV with various $N_2O$ and $B_2H_6$ ratios. We applied those films for the a-Si thin film solar cell and the current-voltage characteristics are as given as: $V_{oc}$ = 853 and 842 mV, $J_{sc}$ = 13.87 and 15.13 $mA/cm^2$. FF = 0.645 and 0.656 and ${\eta}$ = 7.54 and 8.36% with $B_2H_6$ ratios of 0.5 and 1% respectively.

Characteristics of the Mg and In co-doped ZnO Thin Films with Various Substrate Temperatures (RF 마그네트론 스퍼터를 이용하여 제작한 MIZO 박막의 특성에 미치는 기판 온도의 영향)

  • Jeon, Kiseok;Jee, Hongsub;Lim, Sangwoo;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.150-154
    • /
    • 2016
  • Mg and In co-doped ZnO (MIZO) thin films with transparent conducting characteristics were successfully prepared on glass substrates by RF magnetron sputtering technique. The Influence of different substrate temperature (from RT to $400^{\circ}C$) on the structural, morphological, electrical, and optical properties of MIZO thin films were investigated. The MIZO thin film prepared at the substrate temperature of $350^{\circ}C$ showed the best electrical characteristics in terms of the carrier concentration ($4.24{\times}10^{20}cm^{-3}$), charge carrier mobility ($5.01cm^2V^{-1}S^{-1}$), and a minimum resistivity ($1.24{\times}10^{-4}{\Omega}{\cdot}cm$). The average transmission of MIZO thin films in the visible range was over 80% and the absorption edges of MIZO thin films were very sharp. The bandgap energy of MIZO thin films becomes wider from 3.44 eV to 3.6 eV as the substrate temperature increased from RT to $350^{\circ}C$. However, Band gap energy of MIZO thin film was narrow at substrate temperature of $400^{\circ}C$.

Surface Plasmon Effect in Hot Electron Based Photovoltaic Devices

  • Lee, Yeong-Geun;Jeong, Chan-Ho;Park, Jong-Hyeok;Park, Jeong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.162-162
    • /
    • 2011
  • Nanometer-sized noble metals can trap and guide sunlight for enhanced absorption of light based on surface plasmon that is beneficial for generation of hot electron flows. A pulse of high kinetic energy electrons (1-3 eV), or hot electrons, in metals can be generated after surface exposure to external energy, such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms. It is highly probable that the correlation between hot electron generation and surface plasmon can offer a new guide for energy conversion systems [1-3]. We show that hot electron flow is generated on the modified gold thin film (<10 nm) of metal-semiconductor (TiO2) Schottky diodes by photon absorption, which is amplified by localized surface plasmon resonance. The short-circuit photocurrent obtained with low energy photons (lower than bandgap of TiO2, ~3.1-3.2 eV) is consistent with Fowler's law, confirming the presence of hot electron flows. The morphology of the metal thin film was modified to a connected gold island structure after heating to 120, 160, 200, and 240$^{\circ}C$. These connected island structures exhibit both a significant increase in hot electron flow and a localized surface plasmon with the peak energy at 550-570 nm, which was separately characterized with UV-Vis [4]. The result indicates a strong correlation between the hot electron flow and localized surface plasmon resonance with possible application in hot electron based solar cells and photodetectors.

  • PDF

Prediction of Material's Formation Energy Using Crystal Graph Convolutional Neural Network (결정그래프 합성곱 인공신경망을 통한 소재의 생성 에너지 예측)

  • Lee, Hyun-Gi;Seo, Dong-Hwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.134-142
    • /
    • 2022
  • As industry and technology go through advancement, it is hard to search new materials which satisfy various standards through conventional trial-and-error based research methods. Crystal Graph Convolutional Neural Network(CGCNN) is a neural network which uses material's features as train data, and predicts the material properties(formation energy, bandgap, etc.) much faster than first-principles calculation. This report introduces how to train the CGCNN model which predicts the formation energy using open database. It is anticipated that with a simple programming skill, readers could construct a model using their data and purpose. Developing machine learning model for materials science is going to help researchers who should explore large chemical and structural space to discover materials efficiently.

Synthesis of ZnS : Cu nano-crystals and structural and optical properties (ZnS : Cu nano 업자의 합성 및 구조적.광학적 특성)

  • 이종원;이상욱;조성룡;김선태;박인용;최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.138-143
    • /
    • 2002
  • In this study, ZnS: Cu nano-crystals are synthesized by solution synthesis technique (SST). The structural properties such as crystal structure and particle morphology, and the optical properties such as light absorption/transmittance, energy bandgap, and photoluminescence (PL) excitation/emission are investigated. In an attempt to realize the Cu-doping easiness, the synthesis temperature (~$80^{\circ}C$) is applied to the synthesis bath, and the thiourea is used as sulfur precursor, unlike other general chemical synthesis route. Both undoped ZnS and ZnS : Cu nano-crystals have the cubic crystal structure and have the spherical particle shape. The position of light absorption edge is ~305 nm, indicating the occurrence of quantum size effect. The PL emission intensity and line-width are maximum and minimum, respectively, for Cu-doping concentration 0.03M. In particular, the dependence of PL intensity and line-width on the Cu-doping concentration for ZnS : Cu nano-crystals synthesized by SST is reported for the first time in this study. Experimental results of the absorption edge and the PL excitation show that the main emission peak of ZnS : Cu nano-crystals (~510 nm) in this study is due to the radiative recombination center in the energy bandgap induced by Cu dopant.

An Investigation of Electrical Properties in Cation-anion Codoped ZnO by Atomic Layer Deposition (원자층 증착법 기반 양이온-음이온 이중 도핑 효과에 따른 ZnO 박막의 전기적 특성 비교 연구)

  • Dong-eun Kim;Geonwoo Kim;Kyung-Mun Kang;Akendra Singh Chabungbam;Hyung-Ho Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Zinc oxide(ZnO) is a semiconductor material with a bandgap of 3.37 eV and an exciton binding energy of 60 meV for various applications. Recently ZnO has been proven to enhance its electrical properties for utilization as an alternative for transparent conducting oxide (TCO) materials. In this study, cation(Al, Ga)-anion(F) single and double doped ZnO thin films were grown by atomic layer deposition (ALD) to enhance the electrical properties. The structural and optical properties of doped ZnO thin films were analyzed, and doping effects were confirmed to electrical characteristics. In single doped ZnO, it was observed that the carrier concentration was increased after doping, acting as a donor to ZnO. Among the single doping elements, F doped ZnO(FZO) showed the highest mobility and conductivity due to the passivation effect of oxygen vacancies. In the case of double doping, higher electrical characteristics were observed compared to single doping. Among the samples, Al-F doped ZnO(AFZO) exhibited the lowest resistance value. This results can be attributed to an increase in delocalized electron states and a decrease in lattice distortion resulting from the differences in ionic radius. The partial density of states(PDOS) was also analyzed and observed to be consistent with the experimental results.