• Title/Summary/Keyword: Band gap energy

Search Result 711, Processing Time 0.029 seconds

Optical properties of LK-99 and Cu2S

  • Hong Gu Lee;Yu-Seong Seo;Hanoh Lee;Yunseok Han;Tuson Park;Jungseek Hwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.2
    • /
    • pp.1-4
    • /
    • 2024
  • We investigated Pb10-xCux(PO4)6 (0.9 < x < 1.1) (LK-99) and Cu2S, presumed to be contained as an impurity in LK-99, in a wide spectral range from far infrared to ultraviolet using optical spectroscopy. The optical conductivity spectra of both samples were obtained from measured reflectance spectra at various temperatures from 80 to 434 K. Both samples showed several infrared-active phonons in the far and mid-infrared regions. LK-99 showed typical insulating features with a band gap of ~1 eV. Cu2S showed a nonmonotonic temperature-dependent trend and two energy gaps: one energy gap of ~93 meV and a band gap of 2.42 eV. Our results indicate that LK-99 cannot be a superconductor because it is an insulator with a large band gap.

Optical Properties and Thermodynamic Function Properties of Undoped and Co-Doped $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ Single Crystals ($Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$$Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$:$Co^{2+}$ 단결정의 광학적 특성과 열역학 함수 추정)

  • Hyun, Seung-Cheol;Park, Hjung;Park, Kwang-Ho;Oh, Seok-Kyun;Kim, Hyung-Gon;Kim, Nam-Oh
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.275-281
    • /
    • 2003
  • $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ and $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$:$Co^{2+}$ single crystals were grown by CTR method. The grown single crystals have defect chalcopyrite structure with lattice constant a=5.5966$\AA$, c=10.8042$\AA$ for the pure, a=5.6543$\AA$, c=10.8205$\AA$ for the Co-doped single crystal, respectively. The optical energy band gap was given as indirect band gap. The optical energy band gap was decreased according to add of Co-impurity Temperature dependence of optical energy band gap was fitted well to the Varshni equation. From this relation, we can deduced the entropy, enthalpy and heat capacity. Also, we can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_{d}$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

Energy Band Structure, Electronic and Optical properties of Transparent Conducting Nickel Oxide Thin Films on $SiO_2$/Si substrate

  • Denny, Yus Rama;Lee, Sang-Su;Lee, Kang-Il;Lee, Sun-Young;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.347-347
    • /
    • 2012
  • Nickel Oxide (NiO) is a transition metal oxide of the rock salt structure that has a wide band gap of 3.5 eV. It has a variety of specialized applications due to its excellent chemical stability, optical, electrical and magnetic properties. In this study, we concentrated on the application of NiO thin film for transparent conducting oxide. The energy band structure, electronic and optical properties of Nickel Oxide (NiO) thin films grown on Si by using electron beam evaporation were investigated by X-Ray Photoelectron Spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and UV-Spectrometer. The band gap of NiO thin films determined by REELS spectra was 3.53 eV for the primary energies of 1.5 keV. The valence-band offset (VBO) of NiO thin films investigated by XPS was 3.88 eV and the conduction-band offset (CBO) was 1.59 eV. The UV-spectra analysis showed that the optical transmittance of the NiO thin film was 84% in the visible light region within an error of ${\pm}1%$ and the optical band gap for indirect band gap was 3.53 eV which is well agreement with estimated by REELS. The dielectric function was determined using the REELS spectra in conjunction with the Quantitative Analysis of Electron Energy Loss Spectra (QUEELS)-${\varepsilon}({\kappa},{\omega})$-REELS software. The Energy Loss Function (ELF) appeared at 4.8, 8.2, 22.5, 38.6, and 67.0 eV. The results are in good agreement with the previous study [1]. The transmission coefficient of NiO thin films calculated by QUEELS-REELS was 85% in the visible region, we confirmed that the optical transmittance values obtained with UV-Spectrometer is the same as that of estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS within uncertainty. The inelastic mean free path (IMFP) estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS is consistent with the IMFP values determined by the Tanuma-Powell Penn (TPP2M) formula [2]. Our results showed that the IMFP of NiO thin films was increased with increasing primary energies. The quantitative analysis of REELS provides us with a straightforward way to determine the electronic and optical properties of transparent thin film materials.

  • PDF

Large Band Gap Attenuation of CdS Nanoclusters after H2S Exposure

  • Han, Seung-Woo;Park, Eun-Hye;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.7 no.2
    • /
    • pp.29-32
    • /
    • 2019
  • Large band gap attenuation of CdS nanoclusters in hybrid sol gel matrix comprised of 3-(trimethoxysilyl)propyl methacrylate (TMSPM), 15 wt. % zirconium, and various amounts of cadmium acetate was observed after $H_2S$ exposure. Hybrid sol gel matrixes were prepared by hydrolysis and condensation reactions. The sol gels contained with various amount of cadmium acetate were spin coated to glass substrates and exposed to $H_2S$ gas. The UV-visible absorption peaks were shifted toward blue with increasing the amount of CdS nanoclusters and were shifted to the red after thermal process. Significant amount of -OH absorption peaks were reduced after thermal process. Strong room temperature photoluminescence (PL) of CdS nanoclusters was observed after exposing to $H_2S$ gas. The PL intensity increased for several minutes and slowly decreased thereafter. The luminescence peaks were continuously shifted toward blue as the time passed. Extraordinary Stokes shift (approximately 160 nm) was observed.

Opto-electric properties for the $AgInS_2$ epilayers grown by hot wall epitaxy (Hot wall epitaxy법에 의해 성장된 $AgInS_2$ 박막의 광전기적 특성)

  • Lee, K.G.;Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.267-270
    • /
    • 2004
  • A silver indium sulfide($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high qualify crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks. are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\ddot{A}cr$, and the spin orbit splitting, $\ddot{A}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_g(T)$, was determined.

  • PDF

A study on improvement of amorphous silicon solar cell using i-double layer (i-double layer를 사용한 박막태양전지 특성향상에 관한 연구)

  • Jang, Juyeon;Song, Kyuwan;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.115.1-115.1
    • /
    • 2011
  • 최근 기본적인 pin 구조의 박막 cell 에서 i layer를 최적화 시키는 방안으로 double layer 구조가 많이 연구되고 있다. 본 연구에서는 ASA(Advanced Semicon ductor Analysis) simulation을 이용하여 i-double layer 최적화에 대한 연구를 진행해 보았다. 두께 150/150nm의 i double layer의 band gap 가변을 한 simulation 결과를 보았을 때, p쪽의 band gap이 상승하면서 intrinsic layer 내의 field가 증가하여 recombination center가 감소하였으나 FF의 감소가 있었다. n쪽의 band gap을 상승 시켰을때 n/i 쪽 field 증가로 Voc가 상승되어 초기 효율이 증가하였으나 intrinsic layer내의 field가 감소하여 recombination center가 오히려 증가하였다. 결과적으로 electric field와 효율을 동시에 고려했을 때 두께 300nm, 1.75의 band gap을 가지는 single layer 보다 150/150nm두께에 1.8/1.7 또는 1.8/1.75의 bandgap을 가지는 double layer를 사용하였을 때 보다 높은 효율을 얻을 수 있었다.

  • PDF

Computer-simulation with Different Types of Bandgap Profiling for Amorphous Silicon Germanium Thin Films Solar Cells

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.320-320
    • /
    • 2014
  • Amorphous silicon alloy (a-Si) solar cells and modules have been receiving a great deal of attention as a low-cost alternate energy source for large-scale terrestrial applications. Key to the achievement of high-efficiency solar cells using the multi-junction approach is the development of high quality, low band-gap materials which can capture the low-energy photons of the solar spectrum. Several cell designs have been reported in the past where grading or buffer layers have been incorporated at the junction interface to reduce carrier recombination near the junction. We have investigated profiling the composition of the a-SiGe alloy throughout the bulk of the intrinsic material so as to have a built-in electrical field in a substantial portion of the intrinsic material. As a result, the band gap mismatch between a-Si:H and $a-Si_{1-x}Ge_x:H$ creates a barrier for carrier transport. Previous reports have proposed a graded band gap structure in the absorber layer not only effectively increases the short wavelength absorption near the p/i interface, but also enhances the hole transport near the i-n interface. Here, we modulated the GeH4 flow rate to control the band gap to be graded from 1.75 eV (a-Si:H) to 1.55 eV ($a-Si_{1-x}Ge_x:H$). The band structure in the absorber layer thus became like a U-shape in which the lowest band gap was located in the middle of the i-layer. Incorporation of this structure in the middle and top cell of the triple-cell configuration is expected to increase the conversion efficiency further.

  • PDF

Optical Properties of ZnHgGa4Se8 and ZnHgGa4Se8:Co2+ Single Crystals

  • Lee Choong-Il
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.657-661
    • /
    • 2005
  • [ $ZnHgGa_4Se_8\;and\;ZnHgGa_4Se_8::Co^{2+}$ ] single crystals were grown by the Bridgman-Stockbarger method. The single crystals crystallized into a defect chalcopyrite structure. The optical energy band gap of the single crystals was investigated in the temperature range 11-300K. The optical energy band gap of the $ZnHgGa_4Se_8:Co^{2+}$ single crystal was smaller than that of the $ZnHgGa_4Se_8$ single crystal. The temperature dependence of the optical energy band gap of the single crystals was well fitted by the Varshni equqtion. The impurity optical absorption spectrum of the $ZnHgGa_4Se_8:Co^{2+}$ single crystal was measured in the wavelength region 300-2300 m at 80 K. Impurity absorption peaks in the spectrum were analyzed within the framework of the crystal field theory and were attributed to the electron transitions between the energy levels of $Co^{2+}$ sited in the Td symmetry point.

Direct observation of delocalized exciton state in Ta2 NiSe5: direct evidence of the excitonic insulator state

  • Lee, Jin-Won;Gang, Chang-Jong;Eom, Man-Jin;Kim, Jun-Seong;Min, Byeong-Il;Yeom, Han-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.125.1-125.1
    • /
    • 2016
  • The excitonic insulator (EI), which is one of fundamental insulators, was theoretically proposed in 1967 but its material realization has not been established well. Only a few materials were proposed as EIs but their experimental evidences were indirect such as the renormalization of band dispersions or an anomaly in electrical resistivity. We conducted scanning tunneling microscopy / spectroscopy measurements and found out that $Ta_2$ $NiSe_5$, which was the most recently proposed as an EI, had a metal-insulator phase transition with the energy gap of 700 meV at 78 K. Moreover, the spatially delocalized excitonic energy level was observed within the energy gap, which could be the direct evidence of the EI ground state. Our theoretical model calculation with the order parameter of 150 meV reproduces the spectral function and the excitonic energy gap very well. In addition, experimental data shows that the band character is inverted at the valence and conduction band edges by the exciton formation, indicating that the mechanism of exciton condensation is similar to the Bardeen-Cooper-Schrieffer (BCS) mechanism of cooper pairs in superconductors.

  • PDF

Properties Hall Effect of Indium sulfide Thin Film Prepared by Spray Pyrolysis Method (분무합성법으로 성장시킨 Indium Sulfide 박막의 Hall 효과 특성)

  • Oh Gum-Kon;Kim Hyung-Gon;Kim Byung-Cheol;Choi Young-Il;Kim Nam-Oh
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.304-307
    • /
    • 2005
  • The $In_2S_3\;and\;In_2S_3:Co^{2+}$ thin films were grown by the spray Pyrolysis method. The thin films crystallized into tetragonal structures. The indirect energy band gap was 2.32ev for $In_2S_3\;and\;1.81eV\;for\;In_2S_3:Co^{2+}$ at 298K. The direct energy band gap was 2.67ev for $In_2S_3:Co^{2+}$ thin films. Impurity optical absorption peaks were observed for the $In_2S_3:Co^{2+}$ thin films. These impurity absorption peaks are assigned, based on the crystal field theory to the electron transitions between the energy levels of the $Co^{2+}$ ion sited in $T_{d}$ symmetry. The electrical conductivity($\sigma$), Hall mobility(${\mu}_H$), and carrier concentration (n) of the $In_2Se_3$ thin film were measured, and their temperature dependence was investigated.