• Title/Summary/Keyword: Band Structure

Search Result 2,785, Processing Time 0.029 seconds

A Coaxial Band Rejection Filter using a Quarter Wavelength Choke Structure (4분의 1 파장 초크 구조를 이용한 동축형 대역억제필터)

  • Han, Dae Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.313-318
    • /
    • 2018
  • A coaxial band rejection filter is designed and fabricated for a beam interacting cavity. The proposed filter has a quarter wavelength choke for the dominant mode of the cavity. The equivalent circuit of the coaxial band rejection filter is presented and the ABCD parameter os each part is derived to obtain the ABCD parameter of the entire filter. The scattering matrix was obtained from the ABCD matrix and the was simulated by MATLAB using the obtained scattering matrix. The coaxial band rejection filter structure was simulated using HFSS, and the results confirmed the simulation using the equivalent circuit was useful. The designed coaxial band rejection filter was fabricated with 6-1/8 flange. The fabricated filter was measured using a transition from 6-1/8 flange to N-type flange. The insertion loss of the fabricated filter is greater than 25 dB in the dominant mode of the cavity and less than 0.25 dB in the first higher order mode. The measurement results are in good agreement with the simulated results and meet the design specification.

A Study on the Design and Fabrication of the UWB Bandpass Filter (초광대역 대역통과여파기의 설계와 제작에 관한 연구)

  • Goog, Jung-Hyoung;Choi, Byoung-Ha;Kim, Gyu-Cheol;Park, Jung-Ryul;Ham, Min-Su
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.41-47
    • /
    • 2009
  • In this paper, a band pass filter with a rejection band is proposed for UWB(Ultra Wide Band) communication system. First, low pass filter accessed cut off frequency of 10.2 GHz was designed using structure stepped impedance. And high pass filter accessed cut of frequency of 3.2 GHz was designed using parallel short-stub. There was implemented composite connection of designed low pass filter and high pass filter. The relative dielectric constant, the height, the loss tangent of the PCB substrate were ${\varepsilon}_r$=2.2, h=0.508 mm and loss tangent = 0.0009 respectively. The fabricated band pass filter shows a compact size of 3 cm. The fabricated band pass filter was characterized using 37169A VNA(Vector Network Analyzer). And measured result were obtained 7.5 GHz of bandwidth and -10 dB of return loss and -3 dB of insertion loss from pass band. The result of the research can be used for the UWB communications and MIC/MMIC, RFIC system.

  • PDF

Wideband Bandstop filter Using Dual Spurline and Coupling Open Stubs (이중 스퍼라인과 커플링 오픈스터브를 이용한 광대역 대역저지 필터)

  • Lee, Hyun-Seung;Choi, Jee-Hwan;Kim, Choul-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • In this paper, we propose a wideband band-stop filter (BSF) in order to extend the stopband of the band-stop filter using a symmetric dual spurline and the coupled open stub. First, we know that the symmetric dual spurline structure is advantageous in widening the stopband, as compared to the asymmetric dual spurline structure. So we designed a band-stop filter that combines the electrically coupled open stub (ECOS) band-stop filter with a symmetric dual spurline. We can greatly extend the stopband, when it is combined with the dual spurline and electrically coupled open stub on a microstrip transmission line, without any size increment. The stopband of the proposed band-stop filter is extended by approximately 244% (rejection depth: -20 dB) compared with a band-stop filter without a dual spurline.

On the implementation of Taper slot array antenna structure (Taper 슬롯구조배열 안테나 구현)

  • Lee, Cheon-Hee;Kim, Ho-Jun;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.127-134
    • /
    • 2014
  • X-Band taper slot-typed active phased array antenna is studied and designed. Through the simulated and measured performances, it is confirmed that both of active reflection coefficient and active radiation pattern of the designed phased array antenna are agreed well with those of the prototype manufactured one. From this study, the proposed antenna structure is matched to the design target of characteristics of antenna's broadband beam.

Dependence of the Thickness of Spacer Layers on the Current Voltage Characteristics of DB Resonant Tunneling Diodes Analyzed with a Self-Consistent Method (스페이서층 두께변화에 따른 공명터널링 다이오드에서 전류-전압 특성의 자기무모순법에 의한 해석)

  • 김성진;이상훈;성영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.3
    • /
    • pp.46-52
    • /
    • 1994
  • We investigated theoretically the current-voltage characteristics of resonant tunneling diodes with a single quantum well structure. using a self-consistent method. This method is a numerical analysis which is able to include the effects of the undoped spacer layer and the band bending by charge accumulation and depletion on the contact layers which have not been considered in the flat-band model reported by Esaki. so that it is better suited to explain experimental results. The structure used is an $AL_{0.5}Ga_{0.5}AS/GaAs/Al_{0.5}Ga_{0.5}AS$ single quantum well. In this work. we estimate the theoretical current-voltage characteristics of the same structure, and then, the dependence of the current-voltage curves on the thickness of undoped spacer layers sandwiched between the barrier and highly n-doped GaAs contact layer.

  • PDF

A Strong Dependence of the P-P Bond Length on the Transition Metal Component in ThCr2Si2-Type Phosphides CaM2P2 (M = Fe, Ni): The Influence of d Band Position and σp* Mixing

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1215-1218
    • /
    • 2003
  • An analysis of the bonding situation in CaM₂P₂ (M=Fe, Ni) with ThCr₂Si₂ structure is made in terms of DOS and COOP plots. The main contributions to covalent bonding are due to M-P and P-P interactions in both compounds. Particularly, the interlayer P-P bonding by variation in the transition metal is examined in more detail. It turns out that the shorter P-P bonds in CaNi₂P₂ form as a result of the decreasing electron delocalization into ${{\sigma}_p}^*$ of P₂ due to the weaker bonding interaction between the metal d and ${{\sigma}_p}^*$ as the metal d band is falling from Fe to Ni.

An Inset-Fed Microstrip Patch Antenna Having Modified Feeding Structure in the S-Band (급전구조를 변형한 5-Band용 INSET-FED 마이크로스트립 패치 안테나)

  • 정동근;이석문;하천수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.897-903
    • /
    • 2002
  • In this paper, a modified feeding structure for microstrip patch antenna is suggested for improving the performances. The proposed antenna has a gap between the transmission line and the recessed part of the radiating patch which makes a capacitive coupling. It shows higher 511(-l4dB) and lower cross polarization level(-2OdB) compare with the conventional inset ftd patch antenna while having a similar characteristics in another evaluating items. Experimental results are examined and considered to apply to the S-Band application, and the effectiveness has been confirmed by FDTD simulation and measurement simultaneously.

Fabrication of ZnO/TiO2 Nanoheterostructure and Its Application to Photoelectrochemical Cell

  • Song, Hong-Seon;Kim, Hui-Jin;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.459.1-459.1
    • /
    • 2014
  • Because both $TiO_2$ and ZnO has superior characteristic optically and electrically, there are various of research for these materials. However, they have large band gap energy which correspond with not visible light, but UV light. To make up for this disadvantage, Quantum dots (CdS, CdSe) which can absorb the visible light could be deposited on $ZnO/TiO_2$ nanostructure so that the the photoelectrochecmical cell can absorb the light that has larger region of wavelength. Both $TiO_2$ and ZnO can be grown to one-dimensional nanowire structure at low temperature through solutional method. Three-dimensional hierarcical $ZnO/TiO_2$ nanostructure is fabricated by applying these process. Large surface area of this structure make the light absorbed more efficiently. Through type 2 like-cascade energy band structure of nanostructure, the efficient separation of electron-hole pairs is expected. Photoelectrochemical charateristics are found by using these nanostructure to photoelectrode.

  • PDF

Electronic Structures and Noncollinear Magnetic Properties of Structurally Disordered Fe

  • Park, Jin-Ho;Min, B.I.
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The magnetic properties of amorphous Fe were investigated by examining the electronic structures of structurally disordered Fe systems generated from crystalline bcc and fcc Fe using a Monte-Carlo simulation. As a rst principles band method, the real space spin-polarized tight-binding linearized-mun-tin-orbital recursion method was used in the local spin density approximation. Compared to the crystalline system, the electronic structures of the disordered systems were characterized by a broadened band width, smoothened local density of states, and reduced local magnetic moment. The magnetic structures depend on the short range configurations. The antiferromagnetic structure is the most stable for a bcc-based disordered system, whereas the noncollinear spin spiral structure is more stable for a fcc-based system.

High efficiency multiple quantum well device structure in red phosphorescent OLEDs

  • Park, Tae-Jin;Jeon, Woo-Sik;Jang, Jin;Pode, Ramchandra;Kwon, Jang-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.196-199
    • /
    • 2009
  • We report the multiple quantum well (MQW) structure for highly efficient red phosphorescent OLEDs. Various triplet quantum well devices from a single well to five quantum wells are realized using a wide band-gap hole and electron transporting layers, narrow band-gap host and dopant material, and charge control layers (CCL). The maximum external quantum efficiency of 14.8 % with a two quantum well device structure is obtained, which is the highest value among the red phosphorescent OLEDs using same dopant.

  • PDF