• Title/Summary/Keyword: Band Stress

Search Result 284, Processing Time 0.026 seconds

Different Responses to Acupuncture in Electroencephalogram according to Stress Level: A Randomized, Placebo-Controlled, Cross-Over Trial (스트레스 정도에 따라 침 치료가 뇌파(EEG)에 미치는 영향: 무작위배정 플라시보 대조군 교차연구)

  • Kim, Song-Yi;Kim, Sang-Woo;Park, Hi-Joon
    • Korean Journal of Acupuncture
    • /
    • v.31 no.3
    • /
    • pp.136-145
    • /
    • 2014
  • Objectives : The purpose of this randomized, placebo-controlled, cross-over trial was to examine how acupuncture treatment at Shinmun(HT7) affects the brain activity and the autonomic nervous system(ANS), using electroencephalograms(EEG) and heart rate variability(HRV). Methods : Eighteen healthy volunteers participated in two separate experiments: in each experiment, either real acupuncture(RA) or non-penetrating sham acupuncture(SA) was applied at HT7 in random sequences to each person. The EEG and HRV measurements were conducted simultaneously before and during the acupuncture stimulation for 5 minutes, respectively. Resulting EEG and HRV parameters were compared between RA and SA groups. To assess differences according to the stress levels for participants, subgroup analysis was performed based on the results of the stress response index questionnaire. Results : In the results, acupuncture stimulation at HT7 increased ${\alpha}$ band in EEG. In the HRV analysis, heart rate was decreased significantly but HF and RMS-SD were increased in the RA group, compared with those of the SA group. In the subgroup analysis by stress level, participants in the RA group with high stress exhibited an increased in ${\alpha}$ band in their EEG while the low stress participants showed decrease or little increase in the band. For the SA group, ${\alpha}$ band reported relatively moderate changes in all channels. Conclusions : Our results showed that acupuncture induces changes in brain activation and the ANS. Acupuncture was related to the activation of the parasympathetic nervous system. The brain activities of the participants were different depending on the stress level.

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Jeong, Seonghoon;Kim, Hyunsoo;Lee, Sung-Nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1879-1883
    • /
    • 2018
  • We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of $2.41{\times}10^{16}$ and the other with a density of $3.91{\times}10^{16}cm^{-3}$. However, after maximum electrical stress, three sets of deep-level states, with respective densities of $1.82{\times}10^{16}$, $2.32{\times}10^{16}cm^{-3}$, $5.31{\times}10^{16}cm^{-3}$ were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.

Characteristics of Diamondike Carbon thin Films by Low Discharging Frequency(450KHz) PECVD (저주파수(450 KHz) PECVD에 의한 Diamondlike Carbon박막의 특성)

  • Kim, Han-Ju;Ju, Seung-Gi
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.227-232
    • /
    • 1994
  • Diamondlike carbon thin film has been fabricated with low discharging frequency, 450KHz by plasma enhanced chemical vapor deposition. Its physical properties such as optical band gap, microhardness and internal stress have been compared with 13.56MHz film. Optical band gap of 450KHz DLC thin film was less than 13.56MHz film and it was found that C-H bond concentration and total hydrogen contents in the film decreased greatly as the result of FT-IR and CHN analysis. Also, when DLC thin film was fabricated with low discharging frequency, it was expected that the adhesion of the film to the substrate was improved by the great decrease of internal stress without any considerable decrease of microhardness.

  • PDF

Effects of Center Segregation on Weld Cold Cracking Susceptibility (용접 저온균열 감수성에 미치는 중심 편석의 영향)

  • 안영호;이종봉;장래웅;소문섭
    • Journal of Welding and Joining
    • /
    • v.12 no.2
    • /
    • pp.87-96
    • /
    • 1994
  • Correlation between microstructural features and segregation of elements (Si, Mn, P and S) near the mid of thickness in the base metal and the synthetic HAZ was investigated. Furthermore, the relationship between the degree of center segregation and weld cold cracking susceptibility in the thickness direction was also conducted by evaluating the effect of P concentration on the critical applied stress. The results obtained are as follows: 1) Pearlite band, containing the MnS type inclusion and a locally transformed structure with a higher hardness, was observed in the center segregation region. 2) By the weld thermal cycle, center segregation region was transformed to the white band which had a higher hardness than that of base metal due to a greater hardenability of concentrated Mn, P etc.. 3) Weld cold cracking susceptibility in the thickness direction was mainly dependent on the concentration of impurity elements rather than on the number of the segregated particles near the mid of thickness. 4) During welding, the higher concentrated region was easily changed into white band. Therefore, it could be predicted that the initiation and propagation of a cold crack would be promoted by increasing the restraint stress and hydrogen content.

  • PDF

Effects of loading conditions on the fatigue failure characteristics in a polycarbonate

  • Okayasu, Mitsuhiro;Yano, Kei;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.163-174
    • /
    • 2014
  • In this study, fatigue properties and crack growth characteristics of a polycarbonate (PC) were examined during cyclic loading at various mean stress (${\sigma}_{amp}$) and stress amplitude (${\sigma}_{mean}$) conditions. Different S vs. N and da/dN vs. ${\Delta}K$ relations were obtained depending on the loading condition. The higher fatigue strength and the higher resistance of crack growth are seen for the PC samples cyclically loaded at the higher mean stress and lower stress amplitude due to the low crack driving force. Non-linear S - N relationship was detected in the examination of the fatigue properties with changing the mean stress. This is attributed to the different crack growth rate (longer fatigue life): the sample loaded at the high mean stress with lower stress amplitude. Even if the higher stress amplitude, the low fatigue properties are obtained for the sample loaded at the higher mean stress. This was due to the accumulated strain energy to the sample, where severe plastic deformation occurs instead of crack growth (plasticity-induced crack closure). Shear bands and discontinuous crack growth band (DGB) are observed clearly on the fracture surfaces of the sample cyclically loaded at the high stress amplitude, where the lower the ${\sigma}_{mean}$, the narrower the shear band and DGB. On the other hand, final fracture occurred instantly immediately after the short crack growth occurs in the PC sample loaded at the high mean with the low ${\sigma}_{amp}$, i.e., tear fracture, in which the shear bands and DGB are not seen clearly.

GSR, HRV and EEG Analysis of Stress caused by Horror Image and Noise Stimulation (공포영상 및 소음자극에 의한 스트레스의 전기피부반응, 심박변이도 및 뇌파 해석)

  • Kim, Min Soo;Cho, Young Chang
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.381-387
    • /
    • 2017
  • Stress at work has become a serious problem affecting many people of different professions, life situations, and age groups. Stress management should start far before the stress start causing illnesses. In this study, studies were conducted to evaluate stress by measuring the Galvanic skin Response(GRS), Electrocardiograph(ECG), and Electroencephalogram(EEG) generated during images and noise stimuli. The GRS amplitude showed that the stress situation was 27.9 % higher than the baseline. And after the stimulus period, the response time of baseline was longer than 71.6 % than the stress situation. The stress response characteristics of the HRV showed that the rate of change in RMSSD was 16.4 %, and the rate of change of the HF Power was 29.7 %. EEG showed that the frequency band was gradually changed to the ${\theta}$ wave band during stress stimulation. We will be able to utilize image stimuli and noise stimuli as an objective indicator of stress and correlation.

Anaysis of the photoelastic of CR lens using circular polariscope (원편광기를 이용한 CR 렌즈의 광 탄성 해석 연구)

  • Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.11-16
    • /
    • 2001
  • The polariscope to measure :he stress in lens was made up quarter-wave plate polarizer and we analyzed two components of light's wave $E_1$ and $E_2$ following the steps. It is clear that the principal-stress difference ${\sigma}_1-{\sigma}_2$ can be determined in 2-D model if fringe order N is measured each point in sample moreover. the optical axes of sample coincide with the principal-stress directions. The birefringence acted to a light wave and a phase retardation were in proportioned to the principal-stressed difference (${\sigma}_1-{\sigma}_2$) and the intensity of final light wave was proportioned to $sin^2({\Delta}/2)$, when ${\Delta}/2=n^{\pi}$ (n=0, 1, 2, ...) and the extinction occurs. As a experimental result, the extinction band shifted owing to a magnitude of lens' external stress.

  • PDF

Behavior of Initiation and Propagation of Fatigue Crack under Periodic Overstressing(II) - About the Inside Crack of the Caron Steel- (過大, 過小應力下에서의 疲勞크랙發생 傳播擧動 (II) - 탄소동재의 내부크랙을 중심으로-)

  • 송삼홍;원시태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.188-197
    • /
    • 1986
  • With respect to structural carbon steel(SM 22C), it was studied how the overstress or the understress has effects on fatigue inside crack propagation curve of a two level stress. Obtained results are summarized as follows. (1) The overstress or the understress, at a slip band occurrence stage, does not change the inside crack propagation curve because the crack closure and opening phenomena do not happen. (2) The overstress, at a crack propagation stage, does not change the inside crack propagation curve because the crack closure of overstress in compressive state is nearly same that of base stress in compressive state. (3) The understress, at a crack propagation stage, give rise to an acceleration of crack growth because the crack closure of understree in compressive state is more open than that of base stress in compressive state and the phenomenon is the essential increase of the actual applied stress of the specimen.

A Study on Propagation Behavior of Surface-Fatigue-Crack in the Mild Steel at Elevated Temperatures (軟鋼의 高溫 表面渡勞균열 成長擧動에 관한 硏究)

  • ;;北川英夫
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.425-433
    • /
    • 1983
  • Fatigue tests by axial loading (R=0.1) were carried out to investigate fatigue crack growth properties of small surface cracks in mild steel at room temperature, 250.deg. C and 400.deg. C, by using flat specimens with a small artificial pit. All the data of the fatigue crack growth rate obtained in the present tests are determined as a function of the stress intensity factor range, so that the applicability of liner fracture mechanics to the fatigue crack growth of surface cracks at elevated temperatures is investigated and discussed in comparison with the data of type 304 stainless steel at room temperature and elevated temperature. The obtained results are as follows: 1) Relations of both surface fatigue crack length and its depth to cycle ratio fall within a narrow scatter band in spite of different stress levels. 2) The .DELTA. .sigma. .root. .pi. a-da/dN relation of surface fatigue crack growth at room temperature is independent of the stress level and can be plotted as a straight line at log-log diagram, but the relation at 400.deg. C depends partly on the stress level. 3) Relations of the fatigue crack growth into depth d(2b)/dN and is stress intensity factor range .DELTA. $K_{I}$, accounted for the aspect ratio variation, fall within a narrow scatter band for wide range of the applied stress levels. And .DELTA. $K_{I}$E-d(2b)/dN relations of mild steel at different stress level coincide relatively well with the data of type 304 stainless steel. 4) The value of aspect ratio obtained by a beach mark method and a temper coloring method approaches about 0.9 in common with crack growth and it is independent of stress level and temperatures. 5) The equi-crack length curve is parallel to S-N$_{f}$ curve at elevated temperatures.s.s.s.

Robustness Evaluation of GaN Low-Noise Amplifier in Ka-band (Ka-대역 GaN 저잡음 증폭기의 강건성 평가)

  • Lee, Dongju;An, Se-Hwan;Joo, Ji-Han;Kwon, Jun-Beom;Kim, Younghoon;Lee, Sanghun;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.149-154
    • /
    • 2022
  • Due to high power capabilities and high linearity of GaN devices, GaN Low-Noise Amplifiers (LNAs) without a limiter can be implemented in order to improve noise figure and reduce chip area in radar receivers. In this paper, a GaN LNA is presented for Ka-band radar receivers. The designed LNA was realized in a 150-nm GaN HEMT process and measurement results show that the voltage gain of >23 dB and the noise figure of <6.5 dB including packaging loss in the target frequency range. Under the high-power stress test, measured gain and noise figure of the GaN LNA is degraded after the first stress test, but no more degradation is observed under multiple stress tests. Through post-stress noise and s-parameter measurements, we verified that the GaN LNA is resilient to pulsed input power of ~40 dBm.