Characteristics of Diamondike Carbon thin Films by Low Discharging Frequency(450KHz) PECVD

저주파수(450 KHz) PECVD에 의한 Diamondlike Carbon박막의 특성

  • Kim, Han-Ju (Dept.of Materials Science Engineering, Seoul National University) ;
  • Ju, Seung-Gi (Dept.of Materials Science Engineering, Seoul National University)
  • 김한주 (서울대학교 금속공학과) ;
  • 주승기 (서울대학교 금속공학과)
  • Published : 1994.04.01

Abstract

Diamondlike carbon thin film has been fabricated with low discharging frequency, 450KHz by plasma enhanced chemical vapor deposition. Its physical properties such as optical band gap, microhardness and internal stress have been compared with 13.56MHz film. Optical band gap of 450KHz DLC thin film was less than 13.56MHz film and it was found that C-H bond concentration and total hydrogen contents in the film decreased greatly as the result of FT-IR and CHN analysis. Also, when DLC thin film was fabricated with low discharging frequency, it was expected that the adhesion of the film to the substrate was improved by the great decrease of internal stress without any considerable decrease of microhardness.

450KHz 저주파수로 플라즈마 화학증착법을 이용하여 Diamondlike carbon박막을 제작하고 optical band gap, 미소경도, 내부응력 등의 물성에 대하여 13.56MHz의 전원을 사용했을 때보다 optical band gap이 감소하였으며 FT-IR및 CHN분석결과 박막 내의 C-H결합농도와 총 수소의 함량이 크게 감소하는 것으로 밝혀졌다. 또한 저주파수로 DLC 박막을 형성하는 경우 미소경도의 희생없이 내부응력을 크게 줄일 수 있어 기판과의 접착성이 향상될 것으로 기대되었다.

Keywords

References

  1. J. Appl. Phys. v.54 A.Budenzer;B.Dischler;G.Brandt;P.Koidle
  2. J. Vac. Sci. Technol. v.Al T.Mori;Y.Namba
  3. NATO Advanced Study Institute Series B, Physics v.266 Diamond and Diamond-like Films and Coatings A.Lettington;J.C.Angus;R.E.Clausing;L.L.Horton;P.Koidle
  4. Phys. Rev. Lett. v.59 S.Kashi;H.Kang;J.Wayne Rabalias
  5. J. Mater. Res. v.5 no.11 M.Rubin;C.B.Hopper;N.H.Cho;B.Bhusan
  6. J. Appl. Phys. v.65 no.10 J.W.Jou;K.Reichelt;K.Schmidt;B.Dischler
  7. IBM J. RES. DEVELOP. v.34 no.6 A.Grill;B.S.Meyerson;V.V.Patel
  8. Appl. Phys. Lett. v.52 S.Matsumoto;K.Sasaki;M.Motonobu;N.Koshino
  9. Appl. Phys. Lett. v.59 no.20 S.C.Kuo;E.E.Kunhardt;A.R.Srivatsa
  10. J. Appl. Phys. v.71 no.11 D.L.Pappas;K.L.Saenger;J.Bruley;W.Krakow;J.J.Cuomo;T.Gu;R.W.Collins
  11. J. Vac. Sci. Technol. v.A8 no.3 S.Aisenbert
  12. J. Vac. Sci. Technol. v.10 S.Aisenberg;R.W.Chabot
  13. J. Appl. Phys. v.70 M.Shimozuma;G.Tochitani;H.Tagashira
  14. J. Electron. Mater. v.14 M.Shimozuma;K.Kitamori;H.Ohno;H.Hasegawa;H.Tagashira
  15. J. Appl. Phys. v.72 no.1 G.Tochitani;M.Shimozuma;H.Tagashira
  16. Phys. Status Solidi. v.15 J.Tauc;R.Grigorovici;A.Vancu
  17. Proc. Roy. Soc. v.A82 G.G.Stoney
  18. Thin Solid Films v.143 R.Memming
  19. Thin Solid Films v.146 P.Couderc;Y.Catherine
  20. Phys. Rev. B v.30 J.Fink;Th.Muller-Heinzerling;J.Pfluger;B.Scheerer;B.Dischler;P.Koidle;A.Bubenzer;R.E.Sah
  21. J. Vac. Sci. Technol. v.A5 H.Tasi;D.B.Bogy
  22. J. Vac. Sci. Tehcnol. v.A3 F.Jansen;M.Machonkin;S.Kaplan;S.Hark
  23. Appl. Phys. Lett. v.29 E.G.Spencer;P.H.Schmidt;D.C.Joy;F.J.Samsalone
  24. CRC Handbook of Chemical and Physics (2nd ed.) R.C.Weast
  25. J. Appl. Phys. v.52 no.12 R.H.Burce
  26. Thin Solid Films v.208 L.Martinu;A.Raveh;A.Domingue;L.Bertrand;J.E.Klemberg-Sapieha;S.C.Gujrathi;M.R.Wertheimer
  27. Plasma Deposited Thin Films J.C.Angus;P.Koidle;S.Domitz;J.Mort;F.Jasen
  28. Thin Solid Films v.61 no.L5 C.Weissmentel;C.;Schurer;F.Frohlich;P.Grau;H.Lehmann
  29. Thin Solid Films v.146 D.Nir,
  30. Surf. Sci. v.227 M.Kawasaki;G.J.Vandentop;M.Salmeron;G.A.Somorjai