• Title/Summary/Keyword: Ballast Resistance

Search Result 78, Processing Time 0.027 seconds

Buckling Probability Evaluation Framework of CWR Tracks (장대레일 궤도의 좌굴확률평가 시스템)

  • Bae, Hyun-Ung;Han, Seung-Ryong;Choi, Jin-Yu;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.305-309
    • /
    • 2010
  • The buckling behavior of CWR tracks is affected by the various parameters such as stiffness and geometry of track panel, ballast resistance, rail temperature, initial imperfection, and wheel load. Until now, CWR tracks were managed by the dichotomous logic (deterministic approach) despite these influence factors are having the nature of random variables. So, the design method and existing management process to prevent the track buckling can be very non-economic since the value of these influence factors to calculate the track buckling strength are selected by considering the worst track condition. In this study, buckling probability evaluation process is proposed which is based on the reliability index, AFOSM method, and limit state equation.

  • PDF

A study on the Longitudinal Force Variation of CWR according to the Condition of Track Maintenance (궤도보수 작업 조건별 장대레일 축력변화에 관한 연구)

  • Won, Yong-Hoan;Kim, Kwan-Hyung;Kwon, Soon-Jung;Lee, Seung-Youl
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.99-105
    • /
    • 2009
  • This research presents the method to decide proper locations for destressing of CWR using a non-destructive equipments to measure the longitudinal force(installation temperature) in CWR. The effect and necessity of destressing were analyzed by estimating changes of longitudinal force. The installation temperature was measured to find changes of longitudinal force in high speed and conventional lines before and after destressing or track maintenance at the locations where destressing was planed or where change of longitudinal force was expected during track maintenance. Past destressing was carried out within qualitative decision criteria. This research proposes the quantitative criteria to decide the priority order of the destressing locations reasonably by considering the difference of air temperature and stress free temperature during the track maintenances, the grade of ballast resistance force recovering and the length of destressing, etc.

  • PDF

Effect of Track Resistance on Linear Thermal Buckling Characteristics of CWR (도상이 장대 레일의 선형 온도 좌굴에 미치는 영향)

  • 강영종;임남형;신정렬;양재성
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.580-587
    • /
    • 1998
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads and speeds by improving rolling, welding, and fastening technology, Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal and vehicle loads. Thermal loads are caused by an increase in the temperature of railway track. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method(FEM). The finite element discretization is used with a total of 14 degrees of freedom for each rail element. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented in the paper.

  • PDF

Longitudinal Force Analysis of CWR on High Speed Rail Bridges (고속철도 교량상의 장대레일 축력 해석)

  • 이지하;양신추;이종득
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.556-563
    • /
    • 1998
  • Railway bridges have a significant effect on the stress and displacement of continuous welded rail(CWR). Longitudinal compression force at high temperature, combined breaking or acceleration forces can introduce track buckling. On the other hand, longitudinal tensile forces, associated with low temperatures, in combination with breaking forces may break rail. Therefore, it is very important to work out thorough counter measures for those problems, specially in high speed rail which high safety is required. The exact evaluation of longitudinal force of rail has the key to the solution. The main aim of the present paper is to examine whether the longitudinal force of CWR's on Kyung-Bu-HSR satisfy the criteria to be fulfilled in the design of railway bridge. The analyses are carried out by using "CWRAP" program which was developed by our research group. The ballast resistance and breaking force effects on the longitudinal force of CWR are investigated.

  • PDF

Parametric Study on Thermal Buckling of CWR Tracks (장대레일궤도의 온도좌굴에 영향을 미치는 매개변수 연구)

  • 최동호;김호배
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.295-302
    • /
    • 2001
  • The lateral stability of curved continuous welded rail (CWR) is studied fur buckling prevention. This study includes the influences of vehicle induced loads on the thermal buckling behavior of straight and curved CWR tracks. quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deformation induced by wheel loads of vehicle. Parametric numerical analyses are performed to calculate the upper and lower critical buckling temperatures of CWR tracks. The parameters include track lateral resistance, track curvature, longitudinal stiffness, tie-ballast friction coefficient, axle load, truck center spacing, and the ratio of lateral to vertical vehicle load. This study provides a guideline for the improvement or stability for dynamic buckling in on tracks.

  • PDF

A study on determining the minimum vertical spring stiffness of track pad considering running safety. (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim Jeong-ll;Yang SinChu;Kim Yun-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.842-847
    • /
    • 2004
  • This study presents the minimum spring stiffness of resilient track pad considering the safety of running train. A nonlinear static 3-D finite element is used for the modeling of railway superstructure, especially for the reflection of nonlinear resistance of rail fastening system. Moreover, ballast is considered as an elastic foundation. As the input load, eccentric wheel and lateral force are used and they are derived from ' Lateral-force/Wheel-load Estimation Equations '. Analysis results are compared with following two values : allowable lateral displacement of rail head (derived from the geometrical derailment evaluation of wheel/rail) and operation standard value (derived from the field test results of track).

  • PDF

Development of Optimal Shape of n-type Steel Sleeper (n-형 철침목의 최적형상 개발)

  • Yoon Hee-Taek;Chang Seky;Mok Jae-Kyun;Lee Jun-Suk;Kim Moon-Young
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.842-847
    • /
    • 2005
  • In recent railroad markets, the use of steel sleepers is gradually increased due to various advantages in resistance for impact as well as economical efficiency for production, construction. maintenance and recycle. The typical steel sleepers which are successfully used in railroad markets are n-type of Corus Inc. in England and Y-type of ThyssenKrupp Gft Gleistechnik in Germany. Both types have merits and demerits in safety and economical efficiency. In 1990, n-type steel sleeper was developed in Korea, but was failed in putting into practical use, due to the subsidence into the ballast by Jive loads and welding crack, etc.. In this paper, in order to develop optimal shape of n-type steel sleepers for domestic rail mads, parametric studies for cross section, thickness, are performed.

  • PDF

Parametric Study of Thermal Stability on Continuous Welded Rail

  • Choi, Dong-Ho;Na, Ho-Sung
    • International Journal of Railway
    • /
    • v.3 no.4
    • /
    • pp.126-133
    • /
    • 2010
  • The thermal buckling analysis of curved continuous welded rail (CWR) is studied for the lateral buckling prevention. This study includes a thermal buckling theory which accounts for both thermal and vehicle loading effects in the evaluation of track stability. The parameters include rail size, track lateral resistance, track longitudinal and torsional stiffnesses, initial misalignment amplitude and wavelength, track curvature, tie-ballast friction coefficient and truck center spacing. Parametric studies are performed to evaluate the effects of the individual parameters on the upper and lower critical buckling temperatures. The results show that the upper critical buckling temperature is highly affected by the uplift due to vehicle loads. This study provides a guideline for the improvement of stability for dynamic buckling in curved CWR track.

  • PDF

Analysis of DC Plasma using Electrostatic Probe and Fluid Simulation (정전 탐침법과 유체시뮬레이션을 이용한 DC플라즈마 특성 연구)

  • Son, Eui-Jeong;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1417-1422
    • /
    • 2014
  • Using a parallel plate DC plasma system was prepared. Using this equipment, we investigated the basic discharge characteristics of DC argon plasma in terms of electron density, temperature, voltage and current waveforms and plasma potential. The effects of the electrode gap distance, input voltage, ballast resistance and pressure were measured using electrostatic probe. Plasma simulation using fluid approximation has been performed. External circuit effects was included in the simulation. Measured and calculated current voltage characteristics show similar tendencies.

Study of Small Craft Resistance under Different Loading Conditions using Model Test and Numerical Simulations (모형시험과 수치해석을 이용한 하중조건 변화에 따른 소형선박의 저항성능 변화에 관한 연구)

  • Jun-Taek, Lim;Michael;Nam-Kyun, Im;Kwang-Cheol, Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.672-680
    • /
    • 2023
  • Weight is a critical factor in the ship design process given that it has a substantial impact on the hydrodynamic performance of ships. Typically, ships are optimally designed for specific conditions with a fixed draft and displacement. However, in reality, weight and draft can vary within a certain range owing to operational activities, such as fuel consumption, ballast adjustments, and loading conditions . Therefore, we investigated how resistance changes under three different loading conditions, namely overload, design-load, and lightship, for small craft, using both model experiments and numerical simulations. Additionally, we examined the sensitivity of weight changes to resistance to enhance the performance of ships, ultimately reducing power requirements in support of the International Maritime Organization's (IMO) goal of reducing CO2 emissions by 50% by 2050. We found that weight changes have a more significant impact at low Froude Numbers. Operating under overload conditions, which correspond to a 5% increase in draft and an 11.1% increase in displacement, can lead to a relatively substantial increase in total resistance, up to 15.97% and 14.31% in towing tests and CFD simulations, respectively.