• 제목/요약/키워드: Ball-screw systems

검색결과 63건 처리시간 0.034초

Linear Electric Motors in Machining Processes

  • Gieras, Jacek F.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.380-389
    • /
    • 2013
  • Application of linear electric motors to automation of manufacturing processes, gantry robots, machining processes, machining centers, additive manufacturing and laser scribing has been discussed. The paper focuses on replacement of ball lead screw mechanisms with linear electric motors, linear motor driven positioning stages, linear motor driven gantries, machining centers, machining of large objects and industrial lasers. The best linear electric motors for application to machining processes are permanent magnet (PM) linear synchronous motors (LSMs), especially those without PMs in the reaction tail, e.g., high thrust density linear (HDL) LSMs and PM flux switching (FS) LSMs.

Development of an autonomous biped walking robot

  • hyeung-sik choi;Oh, jeong-min;Kim, young-sik;Baek, chang-yul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.105.6-105
    • /
    • 2002
  • Contents 1We developed a new type of lower part of the human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch Joints and one roll joint. In all, a 8 degree-of-freedom robot was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has an embeded controller system including host computer, batteries and motor drivers. In the performance test, we had basic stable walking data so far, but we f...

  • PDF

인체형 이족 보행로봇의 개발 (Development of Human-Sized Biped Robot)

  • 최형식;박용헌;이호식;김영식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.267-267
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR peformed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

Investigation of the semi-active electromagnetic damper

  • Montazeri-Gh, Morteza;Kavianipour, Omid
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.419-434
    • /
    • 2014
  • In this paper, the electromagnetic damper (EMD), which is composed of a permanent-magnet rotary DC motor, a ball screw and a nut, is considered to be analyzed as a semi-active damper. The main objective pursued in the paper is to study the two degrees of freedom (DOF) model of the semi-active electromagnetic suspension system (SAEMSS) performance and energy regeneration controlled by on-off and continuous damping control strategies. The nonlinear equations of the SAEMSS must therefore be extracted. The effects of the EMD characteristics on ride comfort, handling performance and road holding for the passive electromagnetic suspension system (PEMSS) are first analyzed and damping control strategies effects on the SAEMSS performance and energy regeneration are investigated next. The results obtained from the simulation show that the SAEMSS provides better performance and more energy regeneration than the PEMSS. Moreover, the results reveal that the on-off hybrid control strategy leads to better performance in comparison with the continuous skyhook control strategy, however, the energy regeneration of the continuous skyhook control strategy is more than that of the on-off hybrid control strategy (except for on-off skyhook control strategy).

Application of discrete wavelet transform to prediction of ram stuck phenomena

  • Byun, Seung-Hyun;Cho, Byung-Hak;Shin, Chang-Hoon;Park, Joon-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1445-1449
    • /
    • 2005
  • The ram assembly is important equipment in fueling machine of PHWR(Pressurized Heavy Water Reactor) plant where fuel replacement is possible while the plant is in service. Troubles in the ram assembly can cause lots of difficulties in power plant operation. The ram assembly is typically composed of the B-ram, the L-Ram and the C-Ram. The B-ram is focused in this paper because it plays the most important role in the ram assembly. Among the ram fault phenomena, ram stuck phenomena are the most frequent cases in the B-ram, which has a ball screw mechanism driven by a hydraulic motor. Ram stuck phenomena are due to ball wear and damage in ball nut that increase in proportion to the number of fuel replacement. It is required to predict ram stuck phenomena before they occur. In this paper, a method is proposed for predicting ram stuck phenomena using a discrete wavelet transform. The discrete wavelet transform provides information on both the time and frequency characteristics of the input signals. The proposed method uses the frequency bandwidths of coefficients of discrete wavelet decompositions and detail coefficients of discrete wavelet transform to predict ram stuck phenomena. The signal used in this paper is a torque-related signal such as a hydraulic service outlet pressure signal in a hydraulic driving system or a current signal in a DC motor driving system. Finally, the validity of the proposed method is shown via experiment using ball nut characteristic test equipment that simulates ram stuck phenomena due to increased ball friction in ball nut.

  • PDF

냉장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 구조 특성 해석 (Structural Characteristics Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors)

  • 김석일;조재완
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.326-333
    • /
    • 2004
  • This paper presents the structural characteristics analysis of a high-speed horizontal machining center with spindle speed of 50, 000rpm and feedrate of 120m/min. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motor and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guide. The structural analysis model of the high-speed horizontal machining center is constructed by the finite element method, and the validity of structural design is estimated based on the structural deformation of the high-speed horizontal machining center and spindle nose caused by the gravity and inertia forces.

  • PDF

Development of a Biped Walking Robot Actuated by a Closed-Chain Mechanism

  • Choi, Hyeung-Sik;Oh, Jung-Min;Baek, Chang-Yul;Chung, Kyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.209-214
    • /
    • 2003
  • We developed a new type of human-sized BWR (biped walking robot), named KUBIR1 which is driven by the closed-chain type of actuator. A new type of the closed-chain actuator for the robot is developed, which is composed of the four-bar-link mechanism driven by the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of 6 D.O.F joints. For front walking, three pitch joints and one roll joint at the ankle. In addition to this, one yaw joint for direction change, and another roll joint for balancing the body are attached. Also, the robot has two D.O.F joints of each hand and three D.O.F. for eye motion. There are three actuating motors for stereo cameras for eyes. In all, a 18 degree-of-freedom robot was developed. KUBIR1 was designed to walk autonomously by adapting small 90W DC motors as the robot actuators and batteries and controllers are on-boarded. The whole weight for Kubir1 is over 90Kg, and height is 167Cm. In the paper, the performance test of KUBIR1 will be shown.

  • PDF

외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어 (Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model)

  • 한성익
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.

Design of a 3-DOF Hip Module for Humanoid

  • So, Byung-Rok;Yi, Byung-Ju;Kim, Wheekuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.84.4-84
    • /
    • 2002
  • $\textbullet$ To achieve 3 high power-to-weight ratio, design of 3DOF hip module $\textbullet$ Using parallel mechanism and linear actuator consist of a ball-screw mechanism $\textbullet$ The kinematics analysis for the hip module $\textbullet$ A kinematic index to measure actuator power are introduced. $\textbullet$ It is demonstrated throught simulation that incorporation of redu ndant actuator into the hip module

  • PDF