• Title/Summary/Keyword: Ball-Screw System

Search Result 127, Processing Time 0.023 seconds

Development of Aircraft 2-Stage Differential GRA (항공기용 2단 차동 GRA 개발)

  • Lee, Kang-Hee;Im, Dae-Jin;Lee, Sun-Hong;Park, Seul-Ki;Choi, Jin-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.115-121
    • /
    • 2016
  • The aircraft flight control system controls an aircraft's direction and flying attitude, and actuators are key components of control systems. Actuators can be classified as Geared Rotary Actuator (GRA) and Ball Screw Actuator (BSA). GRA is used in mid-sized aircraft, and BSA is used in larger aircraft. A two-stage differential GRA model was suggested in this paper, and structural analysis and performance tests were performed. According to the analysis and experiment, the stiffness of the two-stage differential GRA was 17.57% higher than that of the conventional GRA, and the structural safety was improved.

Position Control of Servo Systems Using Feed-Forward Friction Compensation (피드포워드 마찰 보상을 이용한 서보 시스템의 위치 제어)

  • Park, Min-Gyu;Kim, Han-Me;Shin, Jong-Min;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.508-513
    • /
    • 2009
  • Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation.

Novel computational approaches characterizing knee physiotherapy

  • Kim, Wangdo;Veloso, Antonio P.;Araujo, Duarte;Kohles, Sean S.
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-66
    • /
    • 2014
  • A knee joint's longevity depends on the proper integration of structural components in an axial alignment. If just one of the components is abnormally off-axis, the biomechanical system fails, resulting in arthritis. The complexity of various failures in the knee joint has led orthopedic surgeons to select total knee replacement as a primary treatment. In many cases, this means sacrificing much of an other-wise normal joint. Here, we review novel computational approaches to describe knee physiotherapy by introducing a new dimension of foot loading to the knee axis alignment producing an improved functional status of the patient. New physiotherapeutic applications are then possible by aligning foot loading with the functional axis of the knee joint during the treatment of patients with osteoarthritis.

A Study on Improvement of the Thermal Stability for Development of Linear Motors with High Speed and Accuracy (고속.정밀 이송용 리니어모터 개발을 위한 열적 안정성 향상에 관한 연구)

  • Hwang, Young-Kug;Lee, Choon-Man;Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.126-133
    • /
    • 2008
  • Linear motors are efficient mechanism that offers high speed and positioning accuracy. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speed and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. This paper presents an investigation into the thermal behavior of linear motors with the objective of deriving the optimum cooling conditions. To reach these goals several experiments were carried out, varying operating and cooling conditions. From the experimental results, this research proposed cooling conditions to improve the thermal characteristics of the linear motors.

Automatic Punching System for FPC using Machine Vision (비전 기반의 FPC용 자동 펀칭시스템)

  • Lee Young-Choon;Lee Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.77-86
    • /
    • 2005
  • This paper is about the development of Automatic FPC(flexible printed circuit) punching instrument for the improvement of working condition and cost saving. FPC is used to detect the contact position of keyboard and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, The punching accuracy is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used fur the sake of cost down instead of using high quality vision systems for the factory automation. Test algorithms and programs showed good results to the designed automatic punching system and led to the increasement of productivity and huge cost down to law material like FPC by avoiding bad quality.

A Study on the Cooling Parameter Decision of Linear Motor System by Finite Volume Method (유한체적법을 이용한 리니어모터 시스템의 냉각조건 선정에 관한 연구)

  • Hwang Y.K.;Eun I.E.;Lee C.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.449-450
    • /
    • 2006
  • Development of a feed drive system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper presents an investigation into a thermal behavior of linear motor cooling plate. FVM employed to analyze the thermal behavior of the linear motor cooling plate, using the ANSYS-CFX.

  • PDF

Design of Cymbal Displacement Amplification Device for Micro Punching System (마이크로 펀칭시스템 구현을 위한 심벌변위확대기구의 설계)

  • Choi, Jong-Pil;Lee, Kwang-Ho;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Seong-Uk;Chu, Andy;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • This paper presents the development of a micro punching system with modified cymbal mechanism. To realize the micro punching, we introduced the hybrid system with a macro moving part and micro punching part. The macro moving part consists of a ball screw, a linear guide and the micro step motor and micro punching part includes the PZT actuators and displacement amplification device with modified cymbal mechanism. The PZT actuator is capable of producing very large force, but they provide only limited displacements which are several micro meters. Thus the displacement amplification device is necessary to make those actuators more efficient and useful. For this purpose, a cymbal mechanism in series is proposed. The finite element method was used to design the cymbal mechanism and to analyze the mode shape of the one. The displacement and mode shape error between the FEM results and experiments are within 10%. A considerable design effort has been focused on optimizing the flexure hinge to increase the output displacement and punching force.

A Study on the Structural Design of Linear Motor System (리니어모터 시스템 구조설계에 관한 연구)

  • Eun I.E.;Lee C.M.;Hwang Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1059-1063
    • /
    • 2005
  • Development of a feed drive-system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, due to great power loss and magnetic attraction of the linear motors heating and deflection problems occur. Therefore, it is necessary to design strong structure, cooling device with high efficiency and light weight construction in designing stage of linear motors. This paper presents an investigation into a structural design of linear motor system. In this research, a new concept of moving table with high stiffness and of cooling plate is also introduced. Structure analyses are performed by using a commercial code ANSYS in order to evaluate the design safety.

  • PDF

Punching Position Control by Vision System (비전을 이용한 펀칭위치 제어 시스템)

  • 이성철;이영춘;심기중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.981-984
    • /
    • 2004
  • This paper is about the development of Automatic FPC punching instrument. FPC(flexible printed circuit) is used to detect the contact position of K/B and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, the accuracy of the punching degree is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used for the sake of cost down instead of using high quality vision systems for the FA. Test algorithm shows good results to the designed automatic punching system.

  • PDF

Development of a Miniaturized Microforming System and Investigation of Deformation Behavior of Material for the Production of Micro Components by Forming (미세 부품 성형을 위한 소형 마이크로 성형시스템 개발 및 재료의 변형 거동 고찰)

  • Nam, Jung-Soo;Park, Il-Gu;Lee, Sang-Won;Kim, Hong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1221-1227
    • /
    • 2012
  • As demands on micro-products increase significantly with raising functional integration and increasing complexity, microfoming attracts a lot of attention in the manufacture of micro-products. Since the conventional big forming systems are not adequate to achieve sufficient tolerances of micro-scale parts, it is necessary to reduce the scale of the forming equipment and devices. In addition, understandings on the size effects, which exist in the material behavior and process characterization of microforming processes, need to be expanded. In this study, a miniaturized forming system based on the ball screw and servo motor actuator was developed for the efficient micro-parts production. In addition, tensile tests and cylindrical upsetting experiments were performed to evaluate the performance of the microforming system and to investigate the flow stress and friction size effects in microforming processes.