• Title/Summary/Keyword: Ball and stick model

Search Result 6, Processing Time 0.02 seconds

Kinematic Analysis of Drag Flick Shooting Motion for Training Shooters Specializing in Penalty Corners in Women's Field Hockey: A Case Study (여자 필드하키 페널티코너 전문 슈터 양성을 위한 Drag Flick 슈팅 동작의 운동학적 분석: 사례 연구)

  • Park, Jongchul;Byun, Kyungseok;Kim, Eonho
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.43-51
    • /
    • 2019
  • Objective: This study aims to propose an efficient technical model through a kinematic analysis of field hockey drag flick shooting motion in laboratory situations and game situations and to build up the basic data on drag flick shooting technique through a comparative analysis of a Korean specialized shooter and specialized shooters of competing Asian countries. Method: This study selected one Korean female national specialized shooter and seven specialized shooters of competing countries, China, Japan, India, and Malaysia, who participated in the 2018 Asian Hockey Champions Trophy as research subjects. In exercise situations, a 3-D motion analysis utilizing an infrared camera was conducted, while in game situations, an image-based 3-D motion analysis utilizing a digital camera was conducted. Results: The Korean specialized shooter had smaller changes in the angles of the trunk and the stick in game situations than in exercise situations. She had a high angular velocity of the trunk and the stick head, and the maximum speed of the ball was high. The Korean specialized shooter had the maximum angular velocity of the trunk higher than the specialized shooters of the competing countries did, and the angular velocity of the stick head and the maximum speed of the ball were in the average level. Conclusion: As for drag flick shooting in game situations, changes in the angle of the trunk and the stick were small, and the angular velocity was high due to the pressure that the shooters should perform the motion fast with the defenders' interruptions, and this high angular velocity of the trunk and the stick head affected the movement of the ball. Thus, the maximum speed of the ball was higher in game situations than in exercise situations. The Korean specialized shooter had the maximum angular velocity higher than the specialized shooters of the competing countries did; however, the maximum speed of the ball was average, and it turned out that the maximum speed of the ball was associated with the angular velocity of the stick head in P3. Therefore, Korean specialized shooters need complementary training for a change to the torque of the stick head, using the strong torque of the trunk.

Analysis of Friction-Induced Vibrations in a Ball Screw Driven Slide on Skewed Guideway (경사안내면 상에서 이송되는 볼나사-슬라이드 이송계의 마찰기인 진동해석)

  • Choi, Young Hyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.88-98
    • /
    • 2014
  • A moving mass on a skewed linear guideway model to analyze the friction-induced stick-slip behavior of ball-screw-driven slides is proposed. To describe the friction force, a friction coefficient function is modelled as a third-order polynomial of the relative velocity between the slide mass and a guideway. A nonlinear differential equation of motion is derived and an approximate solution is obtained using a perturbation method for the amplitudes and base frequencies of both pure-slip and stick-slip oscillations. The results are presented with time responses, phase plots, and amplitude plots, which are compared adequately with those obtained by Runge Kutta 4th-order numerical integration, as long as the difference between the static and kinematic friction coefficients is small. However, errors in the results by the approximate solution increase and are not negligible if the difference between the friction coefficients exceeds approximately 40% of the static friction coefficient.

Analysis of the Effects of Teaching Method Using Ball-and-Stick Models in the Middle School (중학교에서 공-막대 모형을 이용한 수업의 효과 분석)

  • Jin, Hee-Ja;Park, Kwang-Seo;Kim, Dong-Jin;Kim, Kyong-Mee;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.1
    • /
    • pp.77-84
    • /
    • 2004
  • The purpose of this study was to analyze the controversial points in the concepts of materials in the science textbook of middle school and to provide alternatives of teaching method. For this study, units in connected textbooks were analyzed and the teaching method using ball-and-stick models was developed. The subjects were 130 second graders from a middle school in Seoul, Korea. It aimed to compare the effectiveness of using ball-and-stick models for lesson with the one of traditional lessons, in learning concepts concerning materials by cognitive levels and to investigate the difference of scientific concept formation about concepts concerning materials by their cognitive levels between experimental group and control group by using concept formation questionnaires. Before the instructions, a short-version GALT was administered. After instructions, the posttest of concepts and attitude test connected with science subject were administered, and 10 months later, the posttest of concepts was administered to analyze the long-term memory effects. According to the results, the experimental group using the ball-and-stick models had significantly higher scores at conceptual understanding and long-term memory effects than the control group and improved the attitude relevant to science subject, and also had affirmative effects in attitude for science and science work. When analyzing the results according to the cognitive level, the long-term memory effects was high in the concrete operational stage students. From the results of this study, middle school students that are more concrete operational stage and transitional stage than formal operational stage elevates interesting in studying by using ball-and-stick models and making material form concretely. It would be effective in helping the students develope the correct concepts by connecting real world as materials and the particle world as atom.

A Comparison of Instruction Effectiveness between the Experiment of Precipitation and the Experiment with Ball and Stick Model Related to 'Law of Definite Proportions' (일정성분비의 법칙에 관련된 앙금생성실험과 모형실험수업의 효과 비교)

  • Paik, Seoung-Hey;Kim, Hyeong-Sam;Han, Yu-Haw;Kim, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.338-349
    • /
    • 2010
  • This study compared the instruction effectiveness between experiments of precipitation and a ball & stick model related to the 'Law of Definite Proportions' of 9th grade science in this study. The subjects were 250 students in the 9th grade. They were divided into two groups, an experimental group and a model group. The results showed that the ratio of thought in which the elements were divided in the solutions and the ratio of thought in which a new compound was created when the two solutions were mixed were higher in the precipitation experiment group than in the model group. The two groups were not different in terms of the ratio of thought related to the reason for the creation of the precipitate. The ratio of thought pertaining to incorrect answers was high, implying that the two strategies were not effective in correcting students' thoughts. However, the ratio of finding patterns from the measuring data in the model group was higher than in the experimental group. However, the ratios of 'definite proportions' inference in the bonding of the reactants were similar in the two groups. From these data, we concluded that the inference of the 'Law of definite proportion' from experiments or models was not suitable for middle school students.

Pre-Sliding Friction Control Using the Sliding Mode Controller with Hysteresis Friction Compensator

  • Choi, Jeong Ju;Kim, Jong Shik;Han, Seong Ik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1755-1762
    • /
    • 2004
  • Friction phenomenon can be described as two parts, which are the pre-sliding and sliding regions. In the motion of the sliding region, the friction force depends on the velocity of the system and consists of the Coulomb, stick-slip, Streibeck effect and viscous frictions. The friction force in the pre-sliding region, which occurs before the breakaway, depends on the position of the system. In the case of the motion of the friction in the sliding region, the LuGre model describes well the friction phenomenon and is used widely to identify the friction model, but the motion of the friction in the pre-sliding such as hysteresis phenomenon cannot be expressed well. In this paper, a modified friction model for the motion of the friction in the pre-sliding region is suggested which can consider the hysteresis phenomenon as the Preisach model. In order to show the effectiveness of the proposed friction model, the sliding mode controller (SMC) with hysteresis friction compensator is synthesized for a ball-screw servo system.

Semiotic Analysis of the Inscriptions Representing Concept of Atom and Molecule in the 9th Grade Science Textbooks (중학교 3학년 과학 교과서에서 원자 및 분자 개념을 표상한 시각자료의 기호학적 분석)

  • Noh, Tae-Hee;Yoon, Mi-Suk;Kang, Hun-Sik;Han, Jae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.5
    • /
    • pp.423-432
    • /
    • 2007
  • In this study we investigated the types of inscriptions representing the concept of atom and molecule in the 9th grade science textbooks developed under the 7th National Curriculum, and analyzed the processes of interpreting those inscriptions on the view of semiotics. The concept of atom and molecule was represented in various ways such as circular diagram, matters of everyday life, ball-and-stick, and STM graphic, etc. We identified two kinds of inscriptions on the basis of the possibilities of handling models: the inscriptions that represent concept of atom and molecule by image; the inscriptions that represent concept of atom and molecule by using specific matters. We analyzed the processes of interpreting inscriptions systematically with a semiotic model that includes ‘structuring processes' and ‘translating processes'. The interpretation of inscriptions representing concept of atom and molecule was a complex process requiring many steps of interpreting works. Educational implications of these findings are discussed.