• Title/Summary/Keyword: Ball Head

Search Result 101, Processing Time 0.029 seconds

Kinematic and Ground Reaction Force Analyses of the Forehand Counter Drive in Table Tennis (탁구 포핸드 카운터 드라이브 동작의 운동학적 변인 및 지면 반력 분석)

  • Lee, Young-Sik;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.155-165
    • /
    • 2010
  • The purpose of this study was to analyze kinematic quantitative factors required of a forehand counter drive in table tennis through 3-D analysis. Four national table tennis players participated in this study. The mean of elapsed time for total drive motion was $1.009{\pm}0.23\;s$. At the phase of impact B1 was the fastest as 0.075 s. This may affect efficiency in the initial velocity and spin of the ball by making a powerful counter drive. The pattern of center of mass showed that it moved back and returned to where it was then moved forward. At the back swing, lower stance made wide base of support and a stronger and safer stance. It may help increasing the ball spin. Angle of the elbow was extended up to $110.75{\pm}1.25^{\circ}$ at the back swing and the angle decreased by $93.75{\pm}3.51^{\circ}$ at impact. Decreased rotation range of swinging arm increased linear velocity of racket-head and impulse on the ball. Eventually it led more spin to the ball and maximized the ball speed. Angle of knee joint decreased from ready position to back swing, then increased from the moment of the impact and decreased at the follow thorough. The velocity of racket-head was the fastest at impact of phase 2. Horizontal velocity was $7796.5{\pm}362\;mm/s$ and vertical velocity was $4589.4{\pm}298.4\;mm/s$ at the moment. It may help increase the speed and spin of the ball in a moment. The means of each ground reaction force result showed maximum at the back swing(E2) except A2. Vertical ground reaction force means suggest that all males and females showed maximum vertical power(E2), The maximum power of means was $499.7{\pm}38.8\;N$ for male players and $519.5{\pm}136.7\;N$ for female players.

Correlation Analysis between Postural Sway and Kinematics Variables of Putter Head during Golf Putting (골프 퍼팅 시 자세 흔들림과 퍼터 헤드의 운동학적 변인 간 상관성 분석)

  • Lee, Jae-Woo;Kwon, Moon-Seok;Park, Jun-Sung;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.217-223
    • /
    • 2020
  • Objective: The purpose of this study was to analyze the effect of postural sway on the kinematic variables of the putter head during golf putting and to provide information to the importance of postural sway control in the putting stroke for novice golfers. Method: The center of pressure (CoP) and Kinematics variables of the putter head were calculated during 2 m flat golf putting using 8 motion capture cameras (250 Hz) and 2 force plate (1,000 Hz). SPSS 24.0 was used to perform Pearson's correlation coefficient and simple regression analysis, and the statistically significance level was set to .05. Results: As a result of analyzing the correlation between CoP variables and the putter head rotation angle, the CoP moving length, CoP moving range (ML direction), and CoP moving velocity (ML direction) showed a positive correlation with the putter head rotation angle (yaw axis) and were statistically significant. Conclusion: Therefore, In order to perform the accurate putting stroke maintaining the ball's directionality, it is determined that it is important to control posture sway in the ML directions by minimizing the movement and velocity of the CoP.

The Fine Structure of the Sperm Ball and Sperm of Urechis unicinctus and Immunogold Localization of $\alpha-Tubulin$ (개불(Urechis unicinctus) Sperm Ball과 정자의 미세구조와 금 입자 면역 반응에 의한 $\alpha-Tubulin$의 분포)

  • Shin, Kil-Sang
    • Applied Microscopy
    • /
    • v.28 no.2
    • /
    • pp.193-205
    • /
    • 1998
  • The Urechis unicinctus sperm and spermatogenic cells prepared from the testis are investigated to identify $\alpha-tubulin$ of axoneme microtubules using mouse monoclonal $anti-\alpha-tubulin$ as the first Ab and Gold(10nm) conjugated goat anti-mouse IgG as the Ab marker. The Ag-Ab reaction analyzed excellently the localization of $\alpha-tubulin$ and the gold particles incorporated with the proximal and distal centrioles, manchette microtubules, and flagellum. The gold particles can be also observed in the spermatogenic cells while the cells are still in sperm ball which is composed of a somatic cell and spermatogenic cells. The sperm ball is the functional unit of sperm production in U unicinctus testis. The spermatids are developed from the spermatogenic cells in the sperm ball and released into the testis cavity through a cortical cytoplasmic opening. The spermatid architectures are similar with the mature sperm of the testis cavity in aspects of shape of discoid acrosome, degree of nuclear condensation and ring type of mitochondrion. However, the distal centriole connecting with the flagella can be observed from the mature sperm while the both proximal and distal centrioles reveal only in the spermatids. The proximal centriole is directly connected with nuclear outer membrane during the stage of nuclear condensation and oriented perpendicularly to the distal centriole whose axis coinciding with the longitudinal axis of the spermatozoon. There are indications that the distal centriole is intimately associated with the polymerization of the flagellum. The manchette microtubules appear during spermatid development but the mature sperm have round head and no conspicuous middle piece.

  • PDF

Soft-$golf^{TM}$ Shaft Kick Point and Stiffness due to the Difference in Performance Analysis (소프트 골프 샤프트의 킥 포인트와 강성의 차이에 따른 성능 분석)

  • Oh, H.Y.;Yu, M.;Kim, S.H.;Jang, J.H.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.227-233
    • /
    • 2010
  • This study analyzed performance according to kick point and stiffness of Soft-$golf^{TM}$ shaft. This research team developed soft-$golf^{TM}$ as a new fusion sports with similar motions with golf and it can be learned safely for all age groups in 2002. The head of Soft-$golf^{TM}$ club is made of zinc alloy and has a mesh or a grid structure, and shaft uses carbon graphite to reduce the total weight of the club. To improve carry distance and to assure consistency of a ball during Soft-$golf^{TM}$ swing, this study manufactured shaft with various kick points (low, middle and high) and stiffness (stiff, regular, lady, morelady) and analyzed a swing motion with characteristics of each shaft presented in a dynamic condition such as a ball's speed, a head's torsion angle and a ball's deviation with ProAnalyst program through a high-speed camera taking pictures using a swing machine robot system(Robo-7). From all of the results, this study determined an appropriate shaft of Soft-$golf^{TM}$.

3-D Kinematic comparison of One Hand Backhand Stroke and Two Hand Backhand Stroke in Tennis (테니스 한손 백핸드 스트로크와 양손 백핸드 스트로크 동작의 3차원 운동학적 비교 분석)

  • Choi, Ji-Young;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.85-95
    • /
    • 2005
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle during One Hand Backhand Stroke and Two Hand Backhand in tennis. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and racket head direction were defined. 1. In three dimensional maximum linear velocity of racket head the X axis and Y axis(horizontal direction) showed $-11.04{\pm}2.69m/sec$, $-9.31{\pm}0.49m/sec$ before impact, the z axis(vertical direction) maximum linear velocity of racket head did not show at impact but after impact this will resulted influence upon hitting ball. It could be suggest that Y axis velocity of racket head influence on ball direction and z axis velocity influence on ball spin after impact. The stance distance between right foot and left foot was mean $75.4{\pm}5.86cm$ during one hand backhand stroke and $72.6{\pm}4.67cm$ during two hand backhand stroke. 2. The three dimensional anatomical angular displacement of trunk in interna rotation-external rotation showed most important role in backhand stroke. and is follwed by flexion-extension. the three dimensional anatomical angular displacement of trunk did not show significant difference between one hand backhand stroke and two hand backhand stroke but the three dimensional anatomical angular displacement of trunk was bigger than one hand backhand stroke. 3. while backhand stroke, the flexion-extension and adduction-abduction of right shoulder joint showed significant different between one hand backhand stroke and two hand backhand stroke. the three dimensional anatomical angular displacement of right shoulder joint showed more flex and abduct in one hand backhand stroke. 4. The three dimensional anatomical angular displacement of left shoulder showed flexion, adduction, and external rotation at impact. after impact, The angular displacement as adduction-abduction of left shoulder changed motion direction as abduction. angular displacement of left shoulder as flexion-extension showed bigger than the right shoulder.

3-D Kinematic Analysis According to Open Stance Patterns During Forehand Stroke in Tennis (테니스 포핸드 스트로크 동안 오픈스탠스 조건에 따른 3차원 운동학적 분석)

  • Choi, Ji-Young;Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.161-173
    • /
    • 2005
  • Recently among several tennis techniques forehand stroke has been greatly changed in the aspect of spin, grip and stance. The most fundamental factor among the three factors is the stance which consists of open, square and closed stance. The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to open stance patterns during forehand stroke in tennis. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVlEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and racket head angle were defined 1. In three dimensional maximum linear velocity of racket head the X axis showed $11.41{\pm}5.27m/s$ at impact, not the Y axis(horizontal direction) and the z axis(vertical direction) maximum linear velocity of racket head did not show at impact but after impact this will resulted influence upon hitting ball It could be suggest that Y axis velocity of racket head influence on ball direction and z axis velocity influence on ball spin after impact. the stance distance between right foot and left foot was mean $74.2{\pm}11.2m$. 2. The three dimensional anatomical angular displacement of shoulder joint showed most important role in forehand stroke. and is followed by wrist joints, in addition the movement of elbow joints showed least to the stroke. The three dimensional anatomical angular displacement of racket increased flexion/abduction angle until the impact. after impact, The angular displacement of racket changed motion direction as extension/adduction. 3. The three dimensional anatomical angular displacement of trunk in flexion-extension showed extension all around the forehand stroke. The angular displacement of trunk in adduction-abduction showed abduction at the backswing top and adduction around impact. while there is no significant internal-external rotation 4. The three dimensional anatomical angular displacement of hip joint and knee joint increased extension angle after minimum of knee joint angle in the forehand stroke, The three dimensional anatomical angular displacement of ankle joint showed plantar flexion, internal rotation and eversion in forehand stroke. it could be suggest that the plantar pressure of open stance during forehand stroke would be distributed more largely to the fore foot. and lateral side.

Precise contact force control of a flip chip mounting head system

  • Shim, Jaehong;Cho, Youngim;Oh, Yeontaek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109.1-109
    • /
    • 2002
  • This paper presents a macro/micro flip chip mounting head system for precise force control. In the proposed macro/ micro system, the macro actuator is conventional do servomotor with a ball screw mechanism and the micro actuator is a voice coil motor(VCM) that consists of four NdFeB magnets and a winded moving coil. For force control, a sensitive strain-gauge force sensor is mounted in the micro actuator. Through harmonic motion between macro and micro actuator, we would like to get precise contact force control when small sized flip chip is mounted on flexible substrate in high speed. In order to show the effectiveness of the proposed macro/micro flip chip mounting head system, we com...

  • PDF

The Effect of Five Different Trunk Stabilization Exercise on Thickness of Abdominal Muscle Using an Ultrasonography Imaging in Normal People (정상인에서 5가지 체간 안정화 운동자세가 초음파 영상을 이용한 복부근 두께에 미치는 영향)

  • Kang, Jung-Hyun;Shim, Jae-Hun;Chon, Seung-Chul
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • The aim of this study is to compare measurements of abdominal muscle thickness using ultrasonography imaging (USI) to those using a special transducer head device, during five different trunk stabilization exercises, ultimately to determine which exercise led to the greatest muscle thickness. Thirty eight healthy subjects participated in this cross-sectional study. The five types of trunk stabilization - i.e., a sit-up on the supine, an upper and lower extremity raise with quadruped on the prone, a leg raise in sitting on the ball, trunk rolling on the ball, and balance using sling on the prone position - were each performed with an abdominal draw. The thickness of the abdominal muscle - including the transverse abdominal (TrA), internal oblique (IO), and external oblique (EO) - was measured by USI with a special transducer head device, at rest and then at contraction in each position. Data were analyzed using one-way repeated ANOVA with the level of significance set at ${\alpha}$=.05. The results were as follows: 1) the TrA thickness was statistically significant (p<.05), whereas the IO and EO thicknesses were not (p>.05); 2) among the five types of trunk stabilization, TrA thickness significantly increased with the balance using a sling in the prone position, (p<.05), whereas no significant difference was noted for the four types of trunk stabilization (p>.05); 3) reliability data showed that there was a high degree of consistency among the measurements taken using the special transducer head device (ICC=.92). In conclusion, the balance using a sling in the prone position was more effective than any of the four other types of trunk stabilization in increasing TrA thickness in healthy subjects.

A Study of the Shot Differences Among Each Clubs and the Weight Shift Patterns from Back Swing Top to the Impact during the Golf Swing (골프스윙시 각 클럽간의 샷 분석 및 백스윙톱과 임팩트시의 체중이동분석)

  • Kim, Chang-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.287-296
    • /
    • 2009
  • This is written to present basic shot information among iron clubs and information of weight shift, because previous study conducted on all clubs was rut enough. This article is about shot analysis of iron club 3,4,5,6,7,8,9 and weight movement, conducted on four skilled golf players and four students who major in golf and are less than three years. The analysis of long and short irons showed statistically meaningful different results for all the participants but iron clubs of 3,4,5 didn't in head speed and ball speed. The skilled group showed better results in head speed, ball speed and direction, Launch angle than the unskilled group. In weight shift movement analysis, the unskilled group moved, on back swing top, their more weight(65.36%) but the skilled group was on their left foot (70.21%)when clubs were on impact moment. It shows that the skilled group put on power more efficiently by moving weight.

Development of piston contact mechanism for radial piston pump (레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발)

  • Ham, Y.B.;Cha, J.G.;Kim, D.M.;Kong, T.W.;Yun, S.N.;Ahn, K.Y.;Kweon, B.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

  • PDF