• 제목/요약/키워드: Ball End Mill

검색결과 120건 처리시간 0.026초

연마 다듬질 가공면의 표면 미세형상 평가에 관한 연구 (A study on the surface roughness assessment of polished surfaces)

  • 조남규;김현국;권기환;한창수;안유민;이성환;박균명
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.326-331
    • /
    • 2000
  • This paper describes the statistical analysis techniques for the surface roughness assessment of polished surfaces. In experiments, the polishing process of the sample surfaces which are manufactured by ball end mill is consist of two steps; the cusp removal process and the surface finishing process. For the cusp removal process, the criterion of cusp removal was established from the power spectrum analysis to assess the change of the cusp removal rate. For the finishing process, the surface was polished by the rotational CBN tool and vibration wood tool. And the surface quality of polished surface was assessed using the functional parameters based on the statistical values of surface profiles. Consequently, the surface finish performance of the polished surface using the vibration wood tool was improved.

  • PDF

그래픽 하드웨어를 이용한 NC 가공 검증의 고속화 (Fast NC Cutting Verification Using Graphic Hardware)

  • 김경범;이상헌;우윤환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.616-619
    • /
    • 2002
  • The z-map structure is widely used for NC tool path verification as it is very simple and fast in calculation of Boolean operations. However, if the number of the x-y grid points in a z-map is increased to enhance its accuracy, the computation time for NC verification increases rapidly. To reduce this computation time, we proposed a NC verification method using 3-D graphic acceleration hardwares. In this method, the z-map of the resultant workpiece machined by a NC program is obtained by rendering tool swept volumes along tool pathos and reading the depth buffer of the graphic card. The experimental results show that this hardware-based method is faster than the conventional software-based method.

  • PDF

역설계를 이용한 신발 밑창 금형의 직접 가공 (Direct Machining for Outs ole Mold of Shoes Using Reverse Engineering)

  • 염정노;박용복
    • 한국CDE학회논문집
    • /
    • 제8권3호
    • /
    • pp.167-174
    • /
    • 2003
  • The outsole mold of the shoes has been manufactured using electro-discharge machining by graphite electrode or using casting etc. The study is concerned with the measurement of the mold of the shoes in use, the modeling by CAD/CAM system, the generation of NC data and the machining by CNC machining center. The machining has been performed from the data type obtained from 3-dimensional measurement points of mold in use. The ball end mill and the engraving cutter is used as cutter and the cutting conditions are adjusted according to the shapes and sizes of the cutter and part in cutting. The method has proposed the possibility for higher productivity and quality on mold-manufacturing of shoes outsole.

CAD/CAM을 이용한 구두창 금형 가공 (Machining for Outsole Mold of Shoes Using CAD/CAM)

  • 박용복;염정노;황인극
    • 산업경영시스템학회지
    • /
    • 제28권1호
    • /
    • pp.24-31
    • /
    • 2005
  • The outsole mold of the shoes has been manufactured using electro-discharge machining by graphite electrode or using casting etc. The study is concerned with the pattern design for the outsole of shoes by CAD, the modeling and the generation of NC data by CAM system and the machining by CNC machining center. The ball end mill and the engraving cutter is used as cutter and the cutting conditions are adjusted according to the shapes and sizes of the cutter and part in cutting. The method showed the possibility coping with the rapid change of shoes industry and proposed the possibility for higher productivity and quality on mold-manufacturing of shoes outsole.

3 축 CNC 를 이용한 5 축 자유곡면 가공 (Five-Axis Machining with Three-Axis CNC Machine)

  • 이정재;서석환
    • 대한산업공학회지
    • /
    • 제21권2호
    • /
    • pp.217-237
    • /
    • 1995
  • One of the most distinguished advantages of five-axis machining is that complex free surfaces(such as impeller) can be machined by one setup. Five-axis CNC machine, however, is very expensive so that its usage is restricted to a few large companies. As an economical approach to five-axis machining, this paper presents a method for machining the five-axis free surfaces(using ball-end mill) on a three-axis CNC machine with an index table. The method developed consists of: a) determining the minimum number of part setups and their interference-free and collision-free potential machining area, b) calculating actual machining area for each setup, and c) generating 3-axis cutter path for each part setup. The method has been successfully tested via computer simulations for several complex surfaces including impeller.

  • PDF

볼엔드밀의 고속가공에서 절삭력 분석 및 평가에 관한 연구 (A study on the Analysis and Evaluation of Cutting forces for High Speed Machining by a Ball-end mill)

  • 이춘만;류승표;고태조;정종윤;정원지
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.167-174
    • /
    • 2005
  • High-speed machining is one of the most effective technologies to improve productivity Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the analysis and evaluation of cutting force in high-speed machining. Cutter rotation directions, slope directions, spindle revolution and depth of cut are control factors for cutting force. The effect of the control factors on cutting force is investigated for the high speed machining of STD11.

Multi-Color Chip-LED용 어레이 렌즈 개발에 관한 연구 (Development of Array-Lens for Multi-Color Chip-LED)

  • 최병기;이동길;장경천
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.50-55
    • /
    • 2007
  • The purpose of this research is to enhance the luminance of the LED and to improve the implementation of color by mounting an array lens on the LED without special technology in process. The workmanship of key components considering the economical efficiency and the injection molding technology for high quality of the product are essential to achieve it. In this paper, the mold was computer-aided was designed and manufactured by CAM software (NX4) and high speed machining center. the applied final machining conditions were 3,000-5,000mm/min feed speed, 15,000-25,000rpm and ${\Phi}0.3mm$ ball end-mill. And the Flow analysis was performed using the mold flow software(MPI) in order to get uniformity of resin. Injection conditions acquired by the flow analysis and the injection experiment are as follows. The cylinder temperature is $220-260^{\circ}C$, the mold temperature is $70-80^{\circ}C$, the injection time is about 1.2sec, the injection pressure and velocity is each 7.8-14.7Mpa, and the injection velocity is 0.8-1.2m/sec.

An implementation of CSG modeling technique on Machining Simulation using C++ and Open GL

  • ;김수진;이종민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1053-1056
    • /
    • 2008
  • An application of CSG (Constructive Solid Geometry) modeling technique in Machining Simulation is introduced in this paper. The current CSG model is based on z-buffer CSG Rendering Algorithm. In order to build a CSG model, frame buffers of VGA (Video Graphic Accelerator) should be used in term of color buffer, depth buffer, and stencil buffer. In addition to using CSG model in machine simulation Stock and Cutter Swept Surface (CSS) should be solid. Method to create a solid Cuboid stock and Ball-end mill CSS are included in the present paper. Boolean operations are used to produce the after-cut part, especially the Difference operation between Stock and CSS as the cutter remove materials form stock. Finally, a small program called MaSim which simulates one simple cut using this method was created.

  • PDF

볼엔드밀을 이용한 고속가공에서 가공경로와 가공환경에 따른 가공성 평가 (Evaluation of Machinability by various cutting conditions in high machining using ball nose-end mills -Effects of cutting orientation and cutting environments-)

  • 이채문;김석원;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.297-301
    • /
    • 2002
  • High-speed machining generates concenter thermal/frictional damage at the cutting ed rapidly decreases the tool life. This paper I at determining the effect of cutter orienter the cutting environment on tool life, tool mechanism when down milling. In this paper, experiments were carried out in various tool and cutting environments, such as dry, wet compressed chilled air, tool life were measu evaluate machinability in high-speed milli difficult-to-cut material and die steel, Tool measured in horizontal upwards, horiz downwards, vertical upwards and vert downwards. In addition, tool life was measur dry, wet and compressed chilled air. For this a compressed chi1led-air system was manufact The results show that a horizontal cutter ori provided a longer tool life than a vertical orientation. With respect to the cutting envi compressed chilled air increased tool life. H the wet condition decreased tool life due thermal shock caused by excessive cooling high-speed mill ins and the compressed chilled had little effect.

  • PDF

알루미늄 합금 7075의 표면 거칠기에 미치는 고속가공의 최적 절삭 깊이에 관한 연구 (A Study on the Optimal Cutting Depth upon Surface Roughness of Al Alloy 7075 in High-speed Machining)

  • 배명환;박형렬;정화
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.74-81
    • /
    • 2013
  • The high-speed machining in the manufacturing industry field has been widely applied for parts of vehicles, aircraft, ships, electronics, etc., recently, because the effect of cost savings for shortening processing time and improving productivity is great. The purpose in this study is to investigate the effect of cutting depth on the surface roughness of workpiece with the spindle rotational speed and feed rate of high-speed machines as a parameter to find the optimal depth in the finishing for ball end mill of the aluminum alloy 7075 which is used much in aircraft parts. When the cutting depth for the respective feed rate and spindle rotational speed is varied from 0.1 mm to 0.7 mm at intervals of 0.2 mm in the wet finishing of the aluminum alloy 7075 by the insoluble cutting oils and high-speed machining used in the rough machining of previous study, the surface roughness values and the cutting temperature are measured. In addition, the cutting surface shapes of test specimens are observed by optical microscope and compared with respectively. It is found that the surface roughness values and the temperature generated during machining are increased as the feed rate and cutting depth are raised, but those are decreased as the spindle rotational speed is increased.