• Title/Summary/Keyword: Baldwin-Lomax model

Search Result 69, Processing Time 0.027 seconds

Study on the Passive Shock/Boundary Layer Interaction Control in Transonic Moist Air Flow (습공기 유동에서 발생하는 충격파와 경계층 간섭의 피동제어에 관한 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.21-29
    • /
    • 2002
  • In the present study, a passive control method, using a porous wall and cavity system, is applied to the shock wave/boundary layer interactions in transonic moist air flow. The two-dimensional, unsteady, compressible, Navier-Stokes equations, which are fully coupled with a droplet growth equation, are solved by the third-order MUSCL type TVD finite difference scheme. Baldwin-Lomax model is employed to close the governing equations. In order to investigate the effectiveness of the present control method, the total pressure loss of the flow and the time-dependent behaviour of shock motions are analyzed in detail. The computed results show that the present passive control method considerably reduces the total pressure losses due to the shock wave/boundary layer interaction in transonic moist air flow and suppresses the unsteady shock wave motions over the airfoil as well. It is also found that the location of the porous ventilation significantly affects the control effectiveness.

Numerical Simulation of Turbulent Flow around 2-D Airfoils in Ground Effect (CFD에 의한 2차원 지면 효과익 주위의 난류유동계산)

  • H.H. Chun;R.H. Chang;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.28-40
    • /
    • 2002
  • Turbulent flows around two-dimensional wing sections in ground effect are analysed by incompressible RANS equations and a finite difference method. The Baldwin-Lomax algebraic turbulence model is used to simulate high Reynolds number flows. The main purpose of this study is to clarify the two-dimensional ground effect and its flow characteristics due to different ground boundary conditions, i.e., moving and fixed bottom boundary. As a first step, to validate the present numerical code, the computational result of Clark-Y(t/C 11.7%) is compared with published numerical results and experimental data. Then, NACA4412 section in ground effect is calculated for various ground clearances with two bottom boundary conditions. According to the computational results, the difference in the lift and moment simulated with the two bottom boundary conditions is negligible, but the drag force simulated by the fixed bottom is to some extent smaller than that by the moving bottom. Therefore, it can be concluded that the drag force measured in a wind tunnel with the fixed bottom could be smaller than that with the moving bottom.

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(II) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (II))

  • Song, Bong-Ha;Ko, Hyun;Yoon, Woong-Sup;Lee, Sang-Kil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.18-25
    • /
    • 2001
  • The results of systematic numerical experiments of secondary gas injection thrust vector control are presented. The effects of secondary injection system such as injection location and nozzle divergent cone angle onto the overall performance parameters such as thrust ratio, specific impulse ratio and axial thrust augmentation, are investigated. Complex nozzle exhaust flows induced by the secondary jet penetration is numerically analyzed by solving unsteady three-dimensional Reynolds-averaged Navier-Stokes equations with Baldwin-Lomax turbulence model for closure. Numerical simulations compared with the experiments of secondary air injection into the rocket nozzle of $9.6^{\cire}$ divergent half angle showed good agreement. The results obtained in terms of overall performance parameters showed that locating the secondary injection orifice further downstream of primary nozzle ensures the prevention of occurrence of reflected shock wave, therefore is suitable for efficient and stable thrust vectoring over a wide range of use.

  • PDF

Calculation of Turbulent Flows around a Ship Model in Drift Motion (사항중인 모형선 주위의 난류 유동 계산)

  • Kim Y. G.;Kim J. J.;Kim H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.66-72
    • /
    • 1999
  • A numerical simulation method has been under development for solving turbulent flows around a ship model in maneuvering motion using the Reynolds Averaged Navier-Stokes equations. The method used second-order finite differences, collocated grids, pressure-Poisson equation and four-stage Runge-Kutta scheme as key components of the solution method. A modified Baldwin-Lomax model is used for the turbulence closure. This paper presents a preliminary result of the computational study on turbulent flows past a ship model in drift motion. Calculations are carried out for a Series 60 $C_B=0.6$ ship model, for which detailed experimental data are available. The results of the present calculations are compared with the experimental data for hydrodynamic forces acting on the model as well as velocity distributions at longitudinal sections. Only fair agreements has been achieved. The computational results show the complex asymmetrical shear flow patterns including three-dimensional separations followed by formation of bilge vortices both in bow and stern regions.

  • PDF

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.

Parametric Study of Transient Spoiler Aerodynamics with Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 스포일러 천이적 공력특성의 파라메트릭 연구)

  • Choi S. W.;Chang K. S.;Ok H. N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.15-24
    • /
    • 2000
  • The transient response of an airfoil to a rapidly deploying spoiler is numerically investigated using the turbulent compressible Navier-Stokes equations in two dimensions. Algebraic Baldwin-Lomax model, Wilcox $\kappa-\omega$ model, and SST $\kappa-\omega$ turbulence model are used to calculate the unsteady separated flow due to the rapid spoiler deployment. The spoiler motion relative to a stationary airfoil is treated by an overset grid hounded by a Dynamic Domain-Dividing Line which has been devised by the authors. The adverse effects of the spoiler influenced by the spoiler location and the hinge gap are expounded. The numerical results are in reasonably good agreement with the existing experimental data.

  • PDF

A Numerical Analysis on Two-Dimensional Viscous Flowfield around a Steam Turbine Cascade (2차원 증기터어빈 익렬유동의 수치적 해석)

  • Kim Y. I.;Kim K. S.;Kim K. C.;Ha M. Y.;Park H. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.64-69
    • /
    • 1995
  • A computer code for solving the Reynolds averaged full Navier-Stokes equations has bent developed for analysis of gas and steam turbine cascade flows with the option of using one of two types of turbulence model. One is the Baldwin-Lomax model and the other is standard $k-{\varepsilon}$ model. The numerical integration is based on the explicit four stage Runge-Kutta scheme and finite volume method. To be verified, the resulting code is applied to VKI turbine cascade and compared with the previous experimental results. Finally, the flowfield around a steam turbine cascade is analyzed. Comparisons with experimental data show that present numerical scheme is an accurate Navier-Stokes solver and can give very good predictions for both gas and steam turbine cascade flow.

  • PDF

AERODYNAMIC SENSITIVITY ANALYSIS FOR NAVIER-STOKES EQUATIONS

  • Kim, Hyoung-Jin;Kim, Chongam;Rho, Oh-Hyun;Lee, Ki Dong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.161-171
    • /
    • 1999
  • Aerodynamic sensitivity analysis codes are developed via the hand-differentiation using a direct differentiation method and an adjoint method respectively from discrete two-dimensional compressible Navier-Stokes equations. Unlike previous other researches, Baldwin-Lomax algebraic turbulence model is also differentiated by hand to obtain design sensitivities with respect to design variables of interest in turbulent flows. Discrete direct sensitivity equations and adjoint equations are efficiently solved by the same time integration scheme adopted in the flow solver routine. The required memory for the adjoint sensitivity code is greatly reduced at the cost of the computational time by allowing the large banded flux jacobian matrix unassembled. Direct sensitivity code results are found to be exactly coincident with sensitivity derivatives obtained by the finite difference. Adjoint code results of a turbulent flow case show slight deviations from the exact results due to the limitation of the algebraic turbulence model in implementing the adjoint formulation. However, current adjoint sensitivity code yields much more accurate sensitivity derivatives than the adjoint code with the turbulence eddy viscosity being kept constant, which is a usual assumption for the prior researches.

  • PDF

Effect of Surface Roughness on Performance of Axial Compressor Blade (축류압축기 블레이드의 표면조도가 성능에 미치는 영향)

  • Samad, Abdus;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.9-16
    • /
    • 2007
  • Deterioration of surface of turbomachinery blades occurs in course of time due to many factors and hence reduces the performance of the machine. In this paper, the effects of surface roughness of transonic axial compressor blade on performance are studied considering a reference blade and a shape distorted (optimized) blade. Optimal blade is designed considering sweep and lean. Baldwin-Lomax turbulence model is used for flow field analysis and Cebeci-Smith roughness model is formulated for roughness modeling. It is found that, as the surface roughness increases, adiabatic efficiency, total temperature ratio and total pressure ratio decrease while Mach number increases. Performance deterioration is more severe in case of distorted blade as compared to reference blade.

Compressor Cascade Flow Analysis by Using Upwind Flux Difference Splitting Method (풍상차분법을 이용한 압축기 익렬유동 해석)

  • 권창오;송동주;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.653-661
    • /
    • 1994
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 supersonic/transonic compressor cascade flow. H-type grid was chosen for its simplicity in applying cyclic tridiagonal matrix algorithm along with conventional slip/no-slip boundary conditions. The thin-layer algebraic model of Baldwin-Lomax was employed for the calculation of turbulent flows. The test case inlet Mach No. was 1.612 and inlet/exit pressure ratio($P_2/P_1$) was 2.15. The results were compared with experimental results from current method were compared well in suction surface with the experiments and other computational results; however, not well in pressure surface. It might be due to the complex flowfields such as shock/boundary layer interaction, turbulence, and flow separation, etc. In the future, a proper turbulence modelling and adaptive grid system will be studied to improve the solution quality.