• Title/Summary/Keyword: Baldwin-Lomax Turbulence model

Search Result 56, Processing Time 0.019 seconds

The Comparison of Performance of Turbulence Model for a Transonic Axial Compressor Rotor (천음속 축류 압축기 동익의 유동장에 대한 난류 모델의 성능비교)

  • Han, Yong-Jin;Kim, Kwang-Yong;Ko, Sung-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.209-214
    • /
    • 2002
  • The present study is to compare the performance of turbulence models in the analysis of the complex flowfield of an axial flow compressor. Baldwin-Lomax turbulence model and k-$\omega$ turbulence model were selected for the comparison. The thin-layer Wavier-Stokes equation was calculated by explicit, finite-difference numerical scheme. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Experimental measurements for NASA rotor 37 were cited fer the comparison with numerical data. The compared two turbulence models gave similar performance over all except for total pressure.

  • PDF

Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor (단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용)

  • Lee, Joon-Suk;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.7-11
    • /
    • 2000
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit fout-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations we discretized with explcit finite difference method. Mired-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-w turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF

Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor (단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용)

  • Lee, Joon-Suk;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.27-32
    • /
    • 1999
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit four-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations are discretized with exploit finite difference method. Mixed-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-$\omega$ turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF

Numerical Analysis for the Performance of an Axial-flow Compressor with Three-Dimensional Viscous Effect (삼차원 점성 효과를 고려한 축류 압축기의 성능에 대한 수치해석)

  • Han Y. J.;Kim K. Y.;Ko S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.182-187
    • /
    • 2003
  • Numerical analysis of three-dimensional vicous flow is used to compute the design speed operating line of a transonic axial-flow compressor. The Navier-Stokes equation was solved by an explicit finite-difference numerical scheme and the Baldwin-Lomax turbulence model was applied. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Two-stage axial compressor of a turboshaft engine developed KARI was chosen for the analysis. Numerical results show reasonably good agreements with experimental measurements made by KARI. Numerical solutions indicate that there exist a strong shock-boundary layer interaction and a subsequent large flow separation. It is also observed that the shock is moved ahead of the blade passage at near-stall condition.

  • PDF

Study on the effect turbulence models for the flow through a subsonic compressor cascade (2차원 아음속 압축기 익렬유동에서의 난류모델 효과에 관한 연구)

  • Nam Gyeong-U;Baek Je-Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51-57
    • /
    • 2001
  • The eddy viscosity turbulence models were applied to predict the flows through a cascade, and the prediction performances of turbulence models were assessed by comparing with the experimental results for a controlled diffusion(CD) compressor blade. The original $\kappa-\omega$ turbulence model and $\kappa-\omega$ shear stress transport(SST) turbulence model were used as two-equation turbulence model which were enhanced for a low Reynolds number flow and the Baldwin-Lomax turbulence model was used as algebraic turbulence model. Farve averaged Wavier-Stokes equations in a two-dimensional, curvilinear coordinate system were solved by an implicit, cell-centered finite-volume computer code. The turbulence quantities are obtained by lagging when the men flow equations have been updated. The numerical analysis was made to the flows of CD compressor blade in a cascade at three different incidence angles (40. 43.4. 46 degrees). We found the reversion in the prediction performance of original $\kappa-\omega$ turbulence model and $\kappa-\omega$ SST turbulence model when the incidence angie increased. And the algebraic Baldwin-Lomax turbulence model showed inferiority to two-equation turbulence models.

  • PDF

Simulation of flow-induced cavity resonance with turbulence models

  • Jang K S.;Park S. O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.110-112
    • /
    • 2003
  • A numerical simulation of an incompressible cavity flow is conducted using turbulence models. Cavity geometry and flow conditions are based on Cattafesta's experiment. Baldwin-Lomax model and ${\kappa}-{\varpi}$ model are employed. While simulation with Baldwin-Lomax model predicts the oscillatory features of the flow, the use of ${\kappa}-{\varpi}$ model in its original form makes the simulation converge to steady flow. To acquire oscillatory flow solution, Kato-Launder form and Time scale bound are adopted in production term of ${\kappa}-{\varpi}$ model. The strouhal number of the flow oscillations from the simulation results corresponds to 1 st mode in simulation but 2 nd mode in experiments. However mean velocity profile is in good agreement with the experimental data and the fluctuation profile follows the tendency of Cattafesta's results.

  • PDF

Evaluation of Turbulence Models for A Compressor Rotor (축류압축기 회전차유동에 대한 난류모델의 성능평가)

  • Lee, Yong-Kab;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.179-186
    • /
    • 1999
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67), and to evaluate the performances of k-$\epsilon$ and Baldwin-Lomax turbulence models. A finite volume method is used for spatial discretization. And, the equations are solved implicitly in time with the use of approximate factorization. Upwind difference scheme is used for inviscid terms, but viscous terms are centrally differenced. The flux-difference-splitting of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. And, the results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, we conclude that k-$\epsilon$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost same.

  • PDF

Numerical Simulation of 2-D Wing-In-Ground Effect (2차원 해면효과의 수치계산)

  • Yang Chen-Jun;Shin Myung-Soo
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.54-62
    • /
    • 1998
  • 본 논문은 2차원 해면효과의 수치계산 결과를 정리하였다. 지면으로부터의 높이변화에 따른 점성유동장을 계산하기 위하여 지배방정식으로는 비압축성 RANS 방정식을, 시간에 대하여서는 음해법으로 프로그램을 구성하였다. 압력항은 가상압축성과 4차 수치확산항을 추가하는 것에 의해 계산하였으며, 높은 레이놀즈 수에서의 효과적인 계산을 위해 Baldwin- Lomax 난류모델을 도입하였다. 해면효과가 없는 무한유중에서의 NACA-0012 단면 계산결과를 실험 데이터와 비교하는 것에 의해 프로그램의 타당성을 확인하였다. NACA-6409와 두께 비 4.6%의 날개에 대하여 해면효과를 고려한 계산을 수행하였다. 계산결과, 높이의 변화에 따라 계산된 무차원계수, 압력 및 속도분포는 해면효과의 특성을 잘 보여주고 있다.

  • PDF

Numerical Simulation of 2-D Wing-In-Ground Effect (2차원 해면효과의 수치계산)

  • Yang Chen-Jun;Shin Myung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.90-98
    • /
    • 1998
  • 본 논문은 2차원 해면효과의 수치계산 결과를 정리하였다. 지면으로부터의 높이변화에 따른 점성유동장을 계산하기 위하여 지배방정식으로는 비압축성 RANS방정식을, 시간에 대하여 서는 음해법으로 프로그램을 구성하였다. 압력항은 가상압축성을 도입 4차 수치확산항을 추가하는 것에 의해 계산하였으며, 높은 레이놀즈수에서의 효과적인 계산을 위해 Baldwin-Lomax 난류 모델을 도입하였다. 해면효과가 없는 무한유중에서의 NACA-0012단면 계산결과를 실험데이터와 비교하는 것에 의해 프로그램의 타당성을 확인하였다. NACA-6409와 두께비 $4.6\%$의 날개에 대하여 해면효과를 고려한 계산을 수행하였다. 높이의 변화에 따라 계산된 무차원계수, 압력 및 속도분포는 해면효과의 특성을 잘 보여주고 있다.

  • PDF

Navier-Stokes Computations of Supersonic Flow over Missile Afterbodies Containing a Centered Propulsive Jet (Navier-Stokes 방정식을 이용한 초음속 제트 추진 비행체 후방의 유동해석)

  • 윤병국;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.356-368
    • /
    • 1992
  • The strongly interactive flow field near a missile afterbody containing a centered exhaust jet is numerically investigated. The thin shear layer and full formulation of compressible, Reynolds I averaged Navier-Stokes equations are solved. A time-dependent implicit numericals algorithm is used to obtain solution for a variety of flow conditions. Turbulence closure is implemented by the Baldwin-Lomax algebraic eddy viscosity model. An adaptive grid technique is adopted to resolve flow regimes with large gradients and to improve the accuracy and efficiency of the computation, Numerical results show good agreemement with experimental data in all regimes.