• 제목/요약/키워드: Balance coefficients

검색결과 228건 처리시간 0.025초

Selection of Fuel/Air feeders in BOP system for a DMFC (직접메탄올 연료전지 BOP 시스템에서 연료/공기 공급 장치의 선정)

  • Kim, Ki-Wong;Kim, Seo-Young;Kang, Byung-Ha
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.248-251
    • /
    • 2008
  • The objective of this study is to select fuel/air feeders for reliable operation of BOP(Balance of Plant) system for a DMFC (direct methanol fuel cell). A 42-cell 50W DMFC stack is considered for performance comparison of selected fuel pumps and air blowers. The present stack has two serpentine anode channels with depth of 1.2 mm and rib of 1 mm and one serpentine cathode channel with depth of 1.5 mm and rib of 1 mm. The pressure drop through the stack is estimated in advance by utilizing the pre-existing loss coefficients data for various flow configurations. Then the operating points of feeders are determined at the balance point of the flow impedance curves for the channels in the DMFC stack and the selected pump and blower performance curves. After estimating the operating flow rates in the anode and cathode channels, the flow measurement with the selected feeders is performed for the comparison with the estimated flow rates. The measured results show that the discrepancy between the estimation and the measurement for the cathode is about 26%, about 3% for the anode

  • PDF

Limit Cycle Application to Friction Identification and Compensation (한계사이클을 이용한 마찰력의 규명 및 보상)

  • Kim Min-Seok;Kim Myoung-Zoo;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제29권7호
    • /
    • pp.938-946
    • /
    • 2005
  • Friction is a dominant nonlinear factor in servomechanisms, which seriously deteriorates system accuracy. A friction compensator is indispensable to fabricate high-performance servomechanisms. In order to compensate for the friction in the servomechanism, identification of the friction elements is required. To estimate the friction of the servomechanism, an accurate linear element model of the system is required first. Tn this paper, a nonlinear friction model, in which static, coulomb and viscous frictions as well as Stribeck effect are included, is identified through the describing function approximation of the nonlinear element. A nonlinear element composed of two relays is intentionally devised to induce various limit cycle conditions in the velocity control loop of the servomechanism. The friction coefficients are estimated from the intersection points of the linear and nonlinear elements in the complex plane. A Butterworth filter is added to the velocity control loop not only to meet the assumption of the harmonic balance method but also to improve the accuracy of the friction identification process. Validity of the proposed method is confirmed through numerical simulations and experiments. In addition, a model-based friction compensator is applied as a feedforward controller to compensate fur the nonlinear characteristics of the servomechanism and to verify the effectiveness of the proposed identification method.

Development of a Drought Detection Indicator using MODIS Thermal Infrared Data

  • Park, Sun-Yurp
    • Korean Journal of Remote Sensing
    • /
    • 제20권1호
    • /
    • pp.1-11
    • /
    • 2004
  • Based on surface energy balance climatology, surface temperatures should respond to drying conditions well before plant response. To test this hypothesis, land surface temperatures (LST) derived from MODIS data were analyzed to determine how the data were correlated with climatic water balance variables and NDVI anomalies during a growing season in Western and Central Kansas. Daily MODIS data were integrated into weekly composites so that each composite data set included the maximum temperature recorded at each pixel during each composite period. Time-integrated, or cumulative values of the LST deviation standardized with mean air temperatures had significantly high correlation coefficients with SM, AE/PE, and MD/PE, ranging from 0.65 to 0.89. The Standardized Thermal Index (STI) is proposed in this study to accomplish the objective. The STI, based on surface temperatures standardized with observed mean air temperatures, had significant temporal relationships with the hydroclimatological factors. STI classes in all the composite periods also had a strong correlation with NDVI declines during a drought episode. Results showed that, based on LST, air temperature observations, and water budget analysis, NDVI declines below normal could be predicted as early as 8 weeks in advance in this study area.

Effect of Sound Field on the Forced Convection Heat Transfer from an Isothermal Cylinder (음장이 등온원통으로부터의 강제대류 열전달에 미치는 영향)

  • 권영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제12권2호
    • /
    • pp.373-380
    • /
    • 1988
  • The effect of sound on the heat transfer from an isothermal cylinder in cross flow is investigated by numerical analysis. The modeling is made for the laminar incompressible flow fluctuating in the range of the Reynolds number, 5.leq.Re.leq.35, by the sinusoidal acoustic field. The instantaneous response of the flow and heat transfer is simulated for various frequencies. It is shown that the heat transfer amplitude decreases and the phase lags behind the flow velocity with increase in the frequency. The time-mean effects of the acoustic field on the flow field and heat transfer, known as the acoustic and thermoacoustic streaming, are analyzed. The time-mean heat transfer coefficients are decreased around the forward stagnation point but increased in the wake region. Such a local difference in heat transfer coefficients is a function of the frequency and becomes greatest at some frequency. However, with balance between the local increase and decrease, the overall heat transfer coefficient is almost unaffected by sound.

The Study of the Control Mechanism of Heel-rise Posture in Dance Major Student and Non-dance Majors (무용전공자와 일반인의 Heel-rise 자세 조절 메커니즘에 관한 연구)

  • Jung, Mi-Ra
    • Korean Journal of Applied Biomechanics
    • /
    • 제17권2호
    • /
    • pp.83-91
    • /
    • 2007
  • This experiment studied the change in a human's control of his or her static posture by analyzing the stabilogram diffusion and, by using the said study, evaluated the control ability of different groups with different experiences. The postures had a rising requirement of heel-rise according to three conditions: heel-toe, ball, toe; the groups were divided into dance major student and non-dance majors. The results of the critical points according to posture did not show a direct relation with the change in postures that had a rising requirement of heel-rise. The diffusion coefficient(D) had greater stochastic activity for short-term regions that utilize open-loop controls without feedback than for long-term regions that used closed-loop controls with feedback to maintain balance. The directional results of the body undergoing disturbance showed that A/P direction's diffusion coefficient (D) was larger than that of M/L direction. Both feet's planar diffusion coefficients were a linear combination of the diffusion coefficients calculated for the x and y axis. In studying the different abilities to control posture between a dance major student and a non-dance majors, a comparison of open-loop control's diffusion coefficient(D) was effective, and dance major student had superior control ability to that of non-dance majors.

Drying Characteristics of Red Peppers by Infrared Heating (원적외선 가열에 의한 고추의 건조특성)

  • Bae, Nae Kyung;Lee, Jong Bung;Sang, Hie Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제6권1호
    • /
    • pp.65-71
    • /
    • 2003
  • Infrared heating has been traditionally used in industrial applications for processes such as dehydration of food industrial. This heating method involves the application of radiation in the wavelength range of 5~50 micrometers. In this work, simultaneous heat balance equations were developed to simulate the infrared radiation heating of red peppers. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the red peppers. Energy for moisture evaporation is supplied by the infrared radiant energy. The equations were validated with experimental data on surface temperature and average moisture content of red peppers. Average deviations of predicted surface red peppers temperature and average red peppers moisture from experimental data were 323~353K and 50~80%, respectively. The spectral extinction coefficients in the wavelength range $1.5<{\lambda}<27$ micrometer at 293K for Red Peppers were determined from results of reflection measurements and the four flux radiative heat transfer calculation. The radiation extinction coefficients were obtained from effective drying factor the temperature 373K.

  • PDF

Sediment Fluxes in Shelf Seas Modelling and Monitoring

  • Prandel, David
    • Journal of the korean society of oceanography
    • /
    • 제37권3호
    • /
    • pp.144-153
    • /
    • 2002
  • This is a review paper, assessing progress reported in a Special Issue (Prandle and Lane, 2000) of Coastal Engineering focusing on simulation of SPM in the North Sea, against issues over a diverse range of shelf seas and their coastal margins. The broad objectives of reproducing the characteristics of sediment fluxes off an open coast and relating these to tidal and wave forcing were achieved. However, accurate computation of these fluxes remains sensitive to largely empirical coefficients used in determining erosion and deposition rates. Bed roughness strongly influences both these coefficients and the associated near-bed current magnitudes (including wave impact thereon). Bed roughness can change significantly over a tidal cycle and dramatically over seasons or in the course of a major event. Accurate simulation of sediment fluxes on a day-to-day basis is constrained by dependency on the initial distribution of mobile sediments. The latter depends on rates and locations of original sources and the time history of preceding events. Remote sensing via aircraft could provide data for assimilation into such models to circumvent these constraints. The approaches described here can be readily applied to other coastal regions to indicate the likely distributions and pathways of known sediment sources. However quantitative simulations will require an associated observational programme. A subsequent stage is to understand the evolving balance between the forecasted sediment movement - the resulting morphological adjustments and thence modifications to the prevailing tidal current and wave regimes.

Study on the Anthropometric and Body Composition Indices for Prediction of Cold and Heat Pattern

  • Mun, Sujeong;Park, Kihyun;Lee, Siwoo
    • The Journal of Korean Medicine
    • /
    • 제42권4호
    • /
    • pp.185-196
    • /
    • 2021
  • Objectives: Many symptoms of cold and heat patterns are related to the thermoregulation of the body. Thus, we aimed to study the association of cold and heat patterns with anthropometry/body composition. Methods: The cold and heat patterns of 2000 individuals aged 30-55 years were evaluated using a self-administered questionnaire. Results: Among the anthropometric and body composition variables, body mass index (-0.37, 0.39) and fat mass index (-0.35, 0.38) had the highest correlation coefficients with the cold and heat pattern scores after adjustment for age and sex in the cold-heat group, while the correlation coefficients were relatively lower in the non-cold-heat group. In the cold-heat group, the most parsimonious model for the cold pattern with the variables selected by the best subset method and Lasso included sex, body mass index, waist-hip ratio, and extracellular water/total body water (adjusted R2 = 0.324), and the model for heat pattern additionally included age (adjusted R2 = 0.292). Conclusions: The variables related to obesity and water balance were the most useful for predicting cold and heat patterns. Further studies are required to improve the performance of prediction models.

Mean wind loads on T-shaped angle transmission towers

  • Guohui Shen;Kanghui Han;Baoheng Li;Jianfeng Yao
    • Wind and Structures
    • /
    • 제38권5호
    • /
    • pp.367-379
    • /
    • 2024
  • Compared with traditional transmission towers, T-shaped angle towers have long cross-arms and are specially used for ultrahigh-voltage direct-current (UHVDC) transmission. Nevertheless, the wind loads of T-shaped towers have not received much attention in previous studies. Consequently, a series of wind tunnel tests on the T-shaped towers featuring cross-arms of varying lengths were conducted using the high-frequency force balance (HFFB) technique. The test results reveal that the T-shaped tower's drag coefficients nearly remain constant at different testing velocities, demonstrating that Reynolds number effects are negligible in the test range of 1.26 × 104-2.30 × 104. The maximum values of the longitudinal base shear and torsion of the T-shaped tower are reached at 15° and 25° of wind incidence, respectively. In the yaw angle, the crosswind coefficients of the tower body are quite small, whereas those of the cross-arms are significant, and as a result, the assumption in some load codes (such as ASCE 74-2020, IEC 60826-2017 and EN 50341-1:2012) that the resultant force direction is the same as the wind direction may be inappropriate for the cross-arm situation. The fitting formulas for the wind load-distribution factors of the tower body and cross-arms are developed, respectively, which would greatly facilitate the determination of the wind loads on T-shaped angle towers.

Wind load characteristics and effects of 1000kV UHV substation frame based on HFFB

  • Hao Tang;Fanghui Li;Xudong Zhi;Jie Zhao
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.477-492
    • /
    • 2024
  • This study presents a comprehensive investigation of wind load characteristics and wind-induced responses associated with different wind incidence angles and terrains of the 1000kV UHV substation frame. High-frequency force balance (HFFB) force measurement wind tunnel tests are conducted on the overall and segment models to characterize wind loads characteristics such as the aerodynamic force coefficients and the shape factors. The most unfavorable wind incidence angles and terrains for aerodynamic characteristics are obtained. A finite element model of the substation frame is built to determine the wind-induced response characters based on the aerodynamic force coefficients and bottom forces of the segment models. The mean and root mean square (RMS) values of displacement responses at different heights of the frame structure are compared and analyzed. The influence of wind incidence angle and terrains on wind-induced responses is also examined. The displacement responses in terms of the crest factor method are subsequently transformed into dynamic response factors. The recommended values of dynamic response factors at four typical heights have been proposed to provide a reference for the wind resistance design of such structures.