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Development of a Drought Detection Indicator using
MODIS Thermal Infrared Data

Sun-Yurp Park

Kansas Applied Remote Sensing Program, University of Kansas

Abstract : Based on surface energy balance climatology, surface temperatures should respond to
drying conditions well before plant response. To test this hypothesis, land surface temperatures (LST)
derived from MODIS data were analyzed to determine how the data were correlated with climatic water
balance variables and NDVI anomalies during a growing season in Westem and Central Kansas. Daily
MODIS data were integrated into weekly composites so that each composite data set included the
maximum temperature recorded at each pixel during each composite period. Time-integrated, or
cumulative values of the LST deviation standardized with mean air temperatures had significantly high
correlation coefficients with SM, AE/PE, and MD/PE, ranging from 0.65 to 0.89. The Standardized
Thermal Index (STI) is proposed in this study to accomplish the objective. The STI, based on surface
temperatures standardized with observed mean air temperatures, had significant temporal relationships
with the hydroclimatological factors. STI classes in all the composite periods also had a strong correlation
with NDVI declines during a drought episode. Results showed that, based on LST, air temperature
observations, and water budget analysis, NDVI declines below normal could be predicted as early as 8
weeks in advance in this study area.
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1. Introduction

Innovations in remote sensing technology have
provided new solutions to environmental problems
because remotely sensed data contain valuable
information about the energy reflected and emitted by
the earth’s surface. Using a wide range of sensors and
digital satellite image processing algorithms, important
biophysical information can be extracted from these

data. The main advantage of satellite remote sensing

imagery is that it covers a relatively large area regularly
and has much finer resolution than most surface
observations systems (e.g. weather stations). In natural
hazard monitoring, remote sensing techniques have
become crucial tools for timely decision making
processes (Ungannai and Kogan, 1998). Therefore, it is
recommended that meteorological data should be used
in conjunction with remote sensing data to develop
better solutions for drought monitoring.

It is well documented that vegetation dynamics are
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highly correlated with vegetation indices derived from
satellite imagery. These indices are defined as
dimensionless radiometric measures that indicate the
activity of green vegetation, including the leaf area index,
percent green cover, biomass, chlorophyll content, and
absorbed photosynthetically active radiation. The most
commonly used indicator of vegetation abundance and
vigor is the Normalized Difference Vegetation Index
(NDVI). Several studies have been conducted in the
Great Plains region, showing the usefulness of the NDVI
for bioclimatic research (Lozano-Gascia ef al., 1995; Tao
et al., 1997; Rundquist, 1998; Rundquist et al., 2000).
Although NDVI has proven a good indicator of
vegetation activity, it is not appropriate for “real-time”
drought monitoring due to its lagged response to climatic
conditions. Studies have shown that responses of NDVI
to climatic factors lag behind by several weeks (Peters ef
al., 1991, Seguin et al., 1994, Lozano-Garcia et al., 1995;
Wang et al., 2001).

Quicker drought detection may be possible using
thermal emission patterns from remote sensors. Land
surface temperature is an important biophysical
indicator because it is directly linked to both the net
radiation flux received by the surface and the surface’s
moisture conditions. It is believed that by using thermal
cmission patterns in combination with meteorological
observations, relationships between the surface
temperature and moisture regimes on the ground will
predict drought areas before they are detected by the
NDVI. With high radiometric and temporal tesolution,
thermal infrared data from MODIS (Moderate
Resolution Tmaging Spectroradiometer) may allow us to
infer changes in surface thermal regimes more
accurately and assist in better drought detection. The
purpose of this study is to determine how MODIS
thermal infrared data are coupled with surface moisture
conditions and NDV], and how early the thermal signals
can indicate a dronght episode in a central Great Plains

region.

2. Methodology

1) Study Area

The study area covers western and central Kansas,
which forms part of the central Great Plains region of
North America (Fig. 1). This tegion has a distinct
continental climate characterized by significant monthly,
seasonal, and year-to-year variations in temperature and
precipitation with a strong east-west precipitation
gradient and a northwest-southeast temperature gradient.
In southwest Kansas, mean annual precipitation is abont
48cm, but in one out of three years, it is less than 35.4cm
or more than 61cm. The variability tends to be greater in
western and south-central Kansas compared to the more
humid eastern region. This highly variable precipitation
regime makes western Kansas one of the most drought-
prone regions in the United States (Reed, 1993). The
frequently occurring droughts and the extreme
temperature seasonality result in a grassland-type

ecosystem with shortgrass prairie in the west and mixed
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Fig. 1. Study area, showing locations of weather stations.
The thin solid lines represent county boundaries, and
the thick lines divide the state into nine climatic
divisions.
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prairie in the central region (Kiichler, 1974). Droughts
also have a substatial impact on the local agricultural
economy and natural grassland/rangeland management
practices. Water availability from the High Plains
aquifer has transformed much of the semi-arid
shortgrass prairie region into one of the largest irrigated
agricultural regions in the U.S. (Kromm and White,
1992). Since this region has relatively flat topography
and is mostly vegetated by grasses or crops, satellite-
driven thermal signals from the surface may be

relatively uncontaminated by slope, aspect, or shadows.

2) MODIS Data

Sixty-seven daily MODIS LST images were obtained
from July to October, 2000. Most MODIS daytime LST
pixels are observed between 10:00 and 12:00 in the
morning in local time. Even though the difference of
LST observation time of MODIS is within two hours
throughout the imagery, LST could change significantly
between 10:00 a.m. to 12:00 p.m. due to rapid energy
flux into the land surface. Knowing that the increase of
incoming radiation during the two-hour period could be
a problem in comparing thermal infrared data from one
place to another, the impact of the data acquisition time
upon thermal signals as a drought indicator needs to be
evaluated. Since LST may increase in proportion to
incoming solar radiation, hourly solar radiation
measurements recorded in the automated weather data
network were used to standardize LST values for a
single fixed time in each composite image. To compare
all pixel values for a day against one fixed time, a
reference time was selected in each day. The reference
acquisition time of each image was decided based on the
time when most image pixels were acquired. Then, the
LST of each image pixel was adjusted for the reference
time using an incoming solar radiation ratio between the
reference time and the acquisition time of that pixel for
each composite period. These time-corrected LST data

were compared to the original data to see if the time

correction improved the representativeness of the data

for the land surface conditions.

3) Climatic Water Budget

A hydroclimatological analysis is an effective
methodology for drought monitoring because it focuses
on fluxes of moisture between the land surface,
vegetation and the atmosphere, taking into account soil
properties. One specific methodology for monitoring
drought and vegetation conditions is with the climatic
water budget. The climatic water budget is a monthly,
weekly, or daily comparison of water supply and
climatic demands for water. Since water conditions in
soil layers are closely tied to vegetation growth,
knowledge of the water budget provides quantitative
insights in biophysical research, especially on drought-
vegetative response relationships. By comparing
precipitation and potential evapotranspiration, it is
possible to obtain values of soil moisture, water deficit,
and water surplus. Empirical techniques, also called
bookkeeping methods, have been widely accepted
because they are simple to evaluate and require only
limited climatic data (Mather, 1978). For daily water
budget calculations, one weather station was selected for
each climatic division in the study area. Since six
climatic divisions exist in the study area, six weather
stations were selected in total. Using an empirical water
budget program, four important water budget factors
were calculated from the daily meteorological data.
They include percent soil moisture (SM), the
actual/potential evapotranspiration ratio (AE/PE),
moisture deficit (MD), and moisture deficit/potential
evapotranspiration ratio (MD/PE). In most cases, these

four factors indicate moisture conditions on the ground.

4) LST-Water Budget Factors Relationships

Daily LST data had to be compressed to weekly data
for comparison with vegetation growth represented by
weekly NDVI. To synchronize the LST data with
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weekly NDVI data, the daily LST values were collapsed
into weekly composite data with the same weekly
intervals as the NDVI data set. In creating the
composites, the highest land surface temperature in each
weekly period was included in the composite because
previous research had found that the maximum apparent
temperature composite was most uniform with little
apparent speckle or other image artifacts (Cihlar ef al.,
1994; Park et al., 2002).

Since LST deviations from air temperatures are
influenced by moisture conditions on the ground, LST
deviation from air temperature was used as an indicator
of surface moisture conditions in this study:

LST deviation = LST - Air Temperature (Tair)

LST minus air temperature has been known to be an
adequate indicator for surface moisture conditions
because it is known that the measure has a linear inverse
relationship with vapor pressure deficit of air, and a
positive relationship with sensible heat flux (Idso et al.,
1977; Jackson et al. 1981). The study hypothesis is that
areas suffering from a water shortage have lower NDVI
values and higher gradients between LST and air
temperature compared to drought-free areas. Therefore,
LST deviation is expected to have a negative correlation
with SM and AE/PE, but a positive correlation with
MD. Correlation coefficients between the LST deviation
values in each of the maximum LST composites and the
water budget factors were calculated to determine how
well the LST data represented surface moisture

conditions.

5) Drought Thermal Index and NDVI

Since it was hypothesized that warmer surfaces had
greater NDVI deviations during drought periods than
cooler surfaces, their thermal signals were expected to
have significant positive relationships with the NDVI
deviations. Oftentimes, however, LST data do not have
a significant relationship with NDVI over short periods

of time because responses by plants to a change in land
surface water regime may not be instantaneous. One of
the important objectives of this study is to determine
how early the LST signals may predict NDVI declines.
Since the water budget factors and LST described above
represent moisture conditions on the land surface, these
factors were expected to have a significant, lagged
correlation with NDVL

The weekly maximum NDVI composite data for a
growing season (March-October) in 2000 and ten-year
mean (1990-1999) weekly NDVI data were obtained
from archives in the Kansas Applied Remote Sensing
(KARS) Program at the University of Kansas to
measure NDVI deviations in each week. The NDVI
deviation is defined as a target NDVI value minus the
ten-year average NDVI for each week. To determine the
relationship, LST deviations in each composite period
were categorized into classes according to their levels.
Then, correlation coefficients between these classes in
each composite period and the NDVI deviations
associated with each of the classes in a composite period
whose NDVI values began to decline significantly
(September 15-21) were computed. For LST deviation
classes with the same interval, a “Standardized Thermal
Index” (STT) is proposed in this study to rescale the land
surface temperature standardized with mean air
temperature from 0 to 1. The index is defined as the
cumulative mean of land surface temperature
standardized with mean air temperature ([LST-
meanTy]cum) divided by the cumulative mean of the
sum of the land surface temperature and the mean air

temperature ([LST+meanT ] eym), which is given by
STI = [LST- meanTyirJcum / [LST+meanT ir]cym

If we assume that LST and mean air temperature are
not lower than 0°C during the growing season, and the
LST of maximum temperature composite data is not
lower than air temperature, STI ranges from 0 to 1.
Maps of STI scaled with 0.05 intervals were created in
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each composite period, and each map was categorized
with 7 different STI levels. The mean values of these
STI classes were calculated, and correlation coefficients
between these STI class values and the NDVI decline
values were calculated to see if the thermal signals were

significantly correlated with NDVI deviations.

3. Results and Discussions

1) LST vs. Water Budget Factor Relations

Solar radiation measured hourly in the automated
weather data network showed that energy flux density
increased rapidly from 10:00 a.m. to 12:00 p.m. by
52.4% on average. However, time correction for a
reference time did not change the LST distribution of the
data substantially because the variance in image
acquisition times was very small. Most data acquisition
times were concentrated around the mode of the data
acquisition time. Time-corrected 1.ST data improved
their correlation with the water budget factors, SM,
AFE/PE, and MD/PE. However, the distribution of
improvement varied spatially. The strength of
correlation most significantly increased in the
southwestern part of the state; it increased up to 20.8%
in Dodge City and up to 11.2% in Healy, while the
improvement was only 3~4% in Salina and Wichita, and
minimal in Goodland and Washington. In general, the
time-corrected LST data improved their correations with
water budget factors by 5.6% for SM, 6.3% for AE/PE,
and 5.6% for MD/PE compared to the original non-
corrected LST data. Since, in part of the study area, the
standardization of data acquisition time had a significant
impact on the representativeness of thermal signals for
land surface conditions, it is believed that time-
correction is an important procedure for the thermal
surface analysis.

Correlation coefficients between LST deviations from

air temperatures and four water budget factors were

calculated (Table 1, top). In all cases, LST-mean air
temperatures (LST-meanT,;;) had higher correlation
coefficients with the water budget factors than those
with maximum air temperatures. It is believed that this
was because we standardized for variations in the
atmospheric temperature that were not related to
variations in surface moisture conditions. Relationships
between the LST-meanT,; and the water budget factors
were further analyzed. SM, AE/PE and MD/PE had
consistent significant relationships with LST-meanT,
whereas MD had varied relationships from place to
place. Among the former three factors, SM had the
highest correlation coefficients, ranging from -0.40 to
-0.73 with the mean of -0.56 (Table 1, top).
Time-integrated, or cumulative values of the LST-
meanTy;, showed even stronger relationships with the
water budget factors, increasing the correlation
coefficients by 33.4% on average. The absolute values
of their correlation coefficients ranged from 0.65 to 0.89
(Table 1, bottom). However, MD still did not show a
meaningful relationship with cumulative LST-meanTy;
values, while the relationships for the other three factors
were improved substantially. MD is merely the
difference between PE and AE. Therefore, it does not
indicate MD against the need for water, which is PE.
This means relative water budget values based on water
demand are more meaningful than absolute terms.
Seasonal patterns of the water budget factors in the
six weather stations are represented in Fig. 2. Not
surprisingly, AE/PE and MD/PE values showed a
mirror-image pattern because they are complementary
measures to each other in a water budget. AE/PE and
MD/PE responded to precipitation more sensitively than
did SM. As shown in the graph, abrupt peaks of AE/PE
or drops in MD/PE, indicating rainfall events, were
OBServed, whereas SM value changes were more
gradual. This is because SM is a measure of moisture
storage where AE has already been taken out. AE and
MD were affected by minimal precipitation whereas SM
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Table. 1. Correlations between land surface temperature (LST) deviations from air temperature and climatic water budget factors.
Relationships of LST- meanTy;, and cumulative LST- meanT; with the climatic water budget factors are compared for
each weather station. On average, correlation coefficients increased by 33.4% when LST- meanTy; values were

temporally integrated.

Relationships Dodge City Goodland ~ Healy Salina Washington Wichita ~ Mean

SM | LST-maxTy -0.46* 0.68** 030 -051*  -0.11 -0.40 041

(%) | LST-meanTy -047* 073 040 069  -047* -0.57% -0.56

AF/ | LST-maxTy -0.46* -0.67%*  -030 048 012 041 -0.40

Current | PE | LST-meanTy -0.47* 0724 037 -0.68%*  -048* -0.58* -0.55
values MD LST-maxTy 073+ -0.12 -0.28 0.61* 0.17 0.48* 0.26
LST-meanTy; 0.75** 017 -0.19 0.67**  0.08 0.63* 029

MD/ | LST-maxTy 041 0.66* 0.32 0.48* 0.16 0.39 0.40

PE | LST-meanTy; 042 0.72%* 038 0.68*%+  0.52% 0.57* 0.55

SM | (LST-maxTair)eum 072%¢  083*%* 028  -085% 010 075% 043

(%) | (LST- meanTair)cum 0.87% 080  -070** -076** -0.65%* -0.82** 073

AE/ | (LST-maxTaieum 073 077 026 -084% 011 0.76%* 043

Cumulative| PE | (LST-meanTyirum 0.89%%  0.82%  0.69*%* 0.78** 066  -083** 073
values v | ST 030 0.17 029 015 029 055 005
(LST-meanT air)cum 0.13 -0.04 -0.56*  -0.02 -0.38 043 -0.11

MD/ | (LST-maxTair)eum 0.71%  075% 030 084 012 0.74%% 042

PE | (LST-meanTyir)eum 0.86** 0.82** 0.72%%  0.77%%  0.67% 083 (.73

* Significant at the 0.05 level, ** Significant at the 0.01 level

did not increase with the previous weekly rainfall totals
as high as 14 mm.

2) STl and NDVI Anomalies

Mean STI values for each STI class ranged from 0.03
to 0.31 during the study period. As expected, these STI
class values had significant positive relationships with
NDVI deviations in each composite period, and the
correlation coefficients increased from 0.85 to 0.98 as
time progressed. This result clearly showed that warmer
LST was correlated with severer drought. In mid-July,
the correlation coefficient reached over 0.9 very rapidly,
and showed only small increases thereafter. This result
indicated that NDVI responses to the thermal signals
could lag behind by up to eight weeks in this area.
Comparing class mean values of STI and NDVI
deviations, the overall correlation between these
variables was strong with the coefficient of

determination (r2) of 0.85. However, as shown in Fig. 3,

there was a noticeable break in the linear relationship,
where as STI passed over 0.2, NDVI decline rates
increased and it produced 15% or more of NDVI
declines. One notable result was that the relationships
were stronger in the western part of the state compared
to the central portion. Correlation coefficients computed
in the west, such as Dodge City, Goodland, and Healy,
were as strong as 0.83 (STEMD/PE), while those in the
central part of the state, including Salina, Washington,
and Wichita, were only as strong as -0.48 (STL.AE/PE).
This result may indicate that thermal signals are more
reliable in drier environments.

Temporal NDVI anomaly patterns were variable
from place to place, but, generally speaking, there were
at least two drought episodes during the growing season
studied, one in mid-summer (June) and the other in late-
summer (September). During these drought episodes,
NDVI values dropped below their ten-year means.

These NDVI declines were associated with continuous
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Fig. 2. NDVI deviations and water budget factors, including SM, AE/PE, and MD/PE,

for the six weather stations.

decreases in SM, lasting from four to seven weeks. As
shown in Fig. 2, if MD/PE values increased (or SM and
AF/PE decreased) continuously for four or more weeks,
the NDVI values dropped below the ten-year averages at
the six weather stations. There was no significant
biomass deterioration until late summer in Salina, but
two drought spells were observed in other areas (mid

summer and late-summer).

Three temporal characteristics were revealed in this
analysis. First, in the mid-summer drought episode, it
took longer for NDVI to decline below the ten-year
mean after SM began to decrease. In the mid-summer
drought spell, SM decreased continuously for 6.7 weeks
on average until NDVI reached below-normal
conditions, whereas this lag was reduced to 4.3 weeks
for the late summer. Second, NDVI values during the
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Fig. 3. Relationships between ST! for each composite period
and NDVI declines in mid-September. The overall r2
value was 0.85, but as STl values became higher than
0.2, the rate of NDVI declines increased.

drought spells dropped close to 10-year-mean values
several weeks prior to below-normal NDVI degradation.
This may indicate a period of SM depletion, when plants
are yet to be stressed. Third, SM decreased to less than
40% of field capacity in the late-summer drought spell
before NDVI declined below average values. Since LST
values reflect SM conditions well, it is believed that the
LST signals can be a good indicator for biomass
declines or deterioration. Although STI had strong
correlation with eight-week lagged NDVI signals on
average, point-based NDVT responses at the six weather
stations varied. Considering the STI value of 0.2 and the
SM of 40% as a threshold for drought detection, NDVI
declines were detected as early as 2 to 8 weeks in
advance depending on locations of the weather stations.
Since drought is a cumulative phenomenon, temporal
distribution of precipitation is important. The prolonged
absence of a significant amount of rainfall usually
precedes NDVI degradation even though the response
time of vegetation may vary depending on
environmental conditions. It took more time to reach
below-normal NDVT values in early summer than it did
in late summer. This is because there was much more
soil moisture available in early or mid-summer than in
late summer, and evapotranspiration rates were much

lower early on, typically, i.e. water demand is greater in

July/August, therefore increasing the drying rate. Across
the state, NDVT values significantly decreased below the
ten-year average in mid-September, especially in the
western and upper central portions of the study area
(Fig. 4A). These NDVI declines are depicted in STI
maps.

Thermal signals signifying the drought phenomenon
appeared in the western part of the state and moved
eastward as time progressed. The STI maps showed
early warm-up in the western part of the state as early as
8 weeks before the mid-September NDVI declines, and
strong thermal signals were observed in the upper
central portion of the study area by late August (Fig. 4B-
C). However, the thermal indicator did not show strong
signals for the eastern part of the study area even though
the NDVI degradation appeared in this area in Fig. 4A.
The eastern area is partly covered by the Flint Hill
Uplands, where, for the most part, natural prairie
grassland remains. Previous research conducted in
Kansas and Nebraska has shown that the NDVI
responses of native grasslands to precipitation were
more sensitive than those of cropland or grassland-
cropland mixed land uses (Yang et al., 1997; Tao et al.,
1997). Therefore, one possible explanation for this result
would be that NDVI for the Flint Hills declined
significantly during the drought episode even though
MD was not as great as in other areas to trigger strong

thermal signals, or surface temperature increases.

4. Conclusions

This study aimed to develop a method for improving
drought monitoring by integrating water budget
analysis, NDVI, and MODIS daily thermal infrared data
sets. From the study results, we can address two main
problems in current drought monitoring schemes. First,
accurate temperature observations from remotely sensed

data can overcome the very coarse spatial resolution of
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Fig. 4. Visual representation of the NDVI deviation (A) from the ten-year mean (1990-
1999) and STI changes from July to September, 2000. The class interval was
set to 0.05. The boundary lines represent climatic divisions.

weather stations at a relatively low cost. Second, it can
be an appropriate tool for real-time drought monitoring,
which current remotely acquired measures, such as
NDVI, cannot accomplish due to a lagged vegetation
response to drought. Results show that surface
temperatures standardized with observed mean air
temperatures had significant correlations with water
budget factors, especially SM and AE/PE and MD/PE
measures. The relationships were increased by 33.4%
when the cumulative means of the surface temperatures
were standardized with air temperature. These measures
indicated NDVT deterioration as early as 8 weeks in

advance based on six weather stations’ observations.

STI, based on surface temperatures standardized with
observed mean air temperatures, also had significant
temporal relationships with the hydroclimatological
factors. STI classes in all the composite periods had a
strong correlation with NDVI declines during a drought
spell. This suggests that STI can be a useful indicator,
not only for real-time drought monitoring, but also for
drought prediction. The analysis of the thermal infrared
data gave a clear visual representation of early thermal
signals for NDVI declines, which occurred in mid-
September. Strong thermal signals appeared much
earlier in the western part of the state than in the central

areas. Knowing that environmental characteristics,
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including temperature gradients and soil properties, are
different from west to east, it is probable that the
intensity of the thermal signals varied from place to
place. The usage of the satellite-based thermal infrared
and NDVI data combined with meteorological ground
observations has excellent potential for improving
current drought monitoring techniques to a large extent
because it provides a higher spatial resolution and can

indicate possible drought areas in advance.
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