• 제목/요약/키워드: Balance Module

검색결과 128건 처리시간 0.173초

Three-Phase Four-Wire Inverter Topology with Neutral Point Voltage Stable Module for Unbalanced Load Inhibition

  • Cai, Chunwei;An, Pufeng;Guo, Yuxing;Meng, Fangang
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1315-1324
    • /
    • 2018
  • A novel three-phase four-wire inverter topology is presented in this paper. This topology is equipped with a special capacitor balance grid without magnetic saturation. In response to unbalanced load and unequal split DC-link capacitors problems, a qusi-full-bridge DC/DC topology is applied in the balance grid. By using a high-frequency transformer, the energy transfer within the two split dc-link capacitors is realized. The novel topology makes the voltage across two split dc-link capacitors balanced so that the neutral point voltage ripple is inhibited. Under the condition of a stable neutral point voltage, the three-phase four-wire inverter can be equivalent to three independent single phase inverters. As a result, the three-phase inverter can produce symmetrical voltage waves with an unbalanced load. To avoid forward transformer magnetic saturation, the voltages of the primary and secondary windings are controlled to reverse once during each switching period. Furthermore, an improved mode chosen operating principle for this novel topology is designed and analyzed in detail. The simulated results verified the feasibility of this topology and an experimental inverter has been built to test the power quality produced by this topology. Finally, simulation results verify that the novel topology can effectively improve the inhibition of an inverter with a three-phase unbalanced load while decreasing the value of the split capacitor.

Heat Transfer Characteristics of 2 t/h-Class Modular Water-Tube-Type Boiler (모듈형 2 t/h급 수관식 보일러의 열전달 특성)

  • Ahn, Joon;Hwang, Sang-Soon;Kim, Jong-Jin;Kang, Sae-Byul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제36권11호
    • /
    • pp.1127-1133
    • /
    • 2012
  • A finned-tube-type evaporator module has been proposed for a 2 t/h-class water-tube-type industrial boiler with multiple burners. The geometry of the fins was changed at each module to equalize the evaporation. The modules were designed by considering the energy balance at each row rather than by following a conventional bulk design procedure. The designed module was built into a 2 t/h-class water-tube-type boiler, and its performance was tested. A numerical simulation was also conducted to evaluate the two- or three-dimensional effects of factors such as the inlet conditions. The numerical simulation also included the conjugate heat transfer problem to predict the fin tip temperature. The heat transfer coefficient with fins is lower than that obtained from the empirical correlation of a bare tube. The fin tip temperature from CFD is higher than that from the analytical solution.

Performance Analysis of CPV Modules for Optimizing Secondary Optical Elements (CPV모듈의 2차 광학계 특성에 따른 성능분석)

  • Park, Jeom-Ju;Jeong, Byeong-Ho;Park, Ju-Hoon;Lee, Kang-Yeon;Kim, Hyo-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • 제40권5호
    • /
    • pp.23-34
    • /
    • 2020
  • Concentrator photovoltaic (CPV) system consists of high-quality complex optical elements, mechanical devices, and electronics components and can have the advantages of high integration and high-efficiency energy sources. III-V compound semiconductor cells have proven performance based on high reliability in the aerospace field, but have characteristics that require absolute support of the balance of systems (BOS) such as solar position trackers, receivers with heat sinks, and housing instruments. To determine the optimum parameters of secondary optical elements (SOEs) design for CPV systems, we designed three types of CPV modules, classified as non-SOEs type, reflective mirror type, and CPC lens type. We measured the I-V and P-V characteristics of the prototype CPV modules with the angle of inclination varying from 0° to 12° and with a 500-magnification Fresnel lens. The experimental results assumed misalignment of the solar position tracker or module design of pinpoint accuracy. As a result, at the 0° tilt angle, the CPC lens produced lower power due to the quartz transmittance ratio compared to that by other SOEs. However, for tilt angles greater than 3°, the CPC lens type module achieved high efficiency and stability. This study is expected to help design high-performance CPV systems.

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (I) - Theory and Development of Module - (대도시 복합유역의 지표 및 지표하 유출해석기법 개발 (I)- 이론 및 모듈의 개발 -)

  • Kwak, Chang-Jae;Lee, Jae-Joon
    • Journal of Korea Water Resources Association
    • /
    • 제45권1호
    • /
    • pp.39-52
    • /
    • 2012
  • Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed. In general, these interactions are considered to be one of the most difficult areas of the discipline, particularly for the modeler who intends simulate the dynamic relations between these two major domains of the hydrological cycle. In essence, one major complexity is the spatial and temporal variations in the dynamically interacting system behavior. The proper simulation of these variations requires the need for providing an appropriate coupling mechanism between the surface and subsurface components of the system. In this study, an approach for modelling surface-subsurface flow and transport in a fully intergrated way is presented. The model uses the 2-dimensional diffusion wave equation for sheet surface water flow, and the Boussinesq equation with the Darcy's law and Dupuit-Forchheimer's assumption for variably saturated subsurface water flow. The coupled system of equations governing surface and subsurface flows is discretized using the finite volume method with central differencing in space and the Crank-Nicolson method in time. The interactions between surface and subsurface flows are considered mass balance based on the continuity conditions of pressure head and exchange flux. The major module consists of four sub-module (SUBFA, SFA, IA and NS module) is developed.

Optimal Flood Control System for Irrigation Reservoir (관개저수지의 최적 홍수관리방안)

  • 문종필;민진우;김영식;박승기;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.311-317
    • /
    • 1998
  • Recently irrigation reservoir has been developed to perform multipurpose function. To get a maximum effect it requires to establish optimal management system for irrigation reservoir in drought and flood season. Especially we dealt with optimal flood control system for irrigation reservoir in this study. This system consists of real-time rainfall data via online system, real-time flood forecasted by SCS method in hourly basis, storage volume by water balance equation, optimal releasing discharge from the gate, the water level in right downstream, and calculation of innundated area, depth, and time using GIS, and amount of flood damages. If we consider the relation of these sub module reasonably, we can reach the optimal flood control to minimize flood damage

  • PDF

Installation and Performance Evaluation of 100kWp PV System in Tibet (중국 티베트지역의 100kWp급 태양광발전시스템 실증연구)

  • Kim Seok-Ki;Yun Jae-Ho;Lee Jeong-Chul;Ahn Se-Jin;Yoon Kyung-Hoon;Song Jin-Soo
    • New & Renewable Energy
    • /
    • 제2권2호
    • /
    • pp.16-22
    • /
    • 2006
  • This paper present the performance evaluation of PV systems installed at Tibet area of China in order to identity the key factors that determines system operation at a severe climate conditions and promote the cooperation of PV technology between Korea and China. The installed systems consist of 100kW on-grid connected PV systems, BOS(balance of systems), data acquisition and transmission equipments. The Korea side supplied the solar cell, BOS like as inverter, control box and monitoring system. And the Chinese side assembled solar module, constructed site and built control house. It has been shown that the average radiation per monthly from Tibet is 1.5 times larger than that from Mokpo. Also, radiation time from Tibet is 2hour higher than that from Korea.

  • PDF

Performance Analysis of 100kWp Photovoltaics System in Tibet (중국 티베트 지역의 100kWp급 태양광발전시스템 성능분석)

  • Kim, Seok-Ki;Choi, Bong-Ha;Park, Soo-Uk;Song, Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.284-287
    • /
    • 2007
  • This paper presents the performance evaluation of PV systems installed at Tibet area of China in order to identity the key factors that determines system operation at a severe climate conditions and promote the cooperation of PV technology between Korea and China. The installed systems consist of 100kW on-grid connected PV systems, BOS(balance of systems), data acquisition and transmission equipments. The Korea side supplied the solar cell, BOS like as inverter, control box and monitoring system. And the Chinese side assembled solar module, constructed site and built control house. It has been shown that the average radiation per monthly from Tibet is 1.5 times larger than that from Mokpo. Also, radiation time from Tibet is 2hour higher than that from Korea. The economical analysis has shown that with the current prices, investment in a grid connected PV systems is generally profitable

  • PDF

HRV Monitoring System with RF Communication (RF 전송 모듈을 통한 HRV 모니터링 시스템)

  • Yoon, Tae-Ho;Kim, Kyeong-Seop;Shin, Seung-Won;Kim, Sung-Hoi;Lee, Jeong-Whan;Lee, Kang-Hwi;Kim, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.2157-2158
    • /
    • 2006
  • Heart Rate Variability (HRV) system is useful for evaluating the balance in homeostasis of autonomic nervous system. In this study, we implement HRV monitoring system by performing real time FFT spectrum analysis on R-R intervals data acquired from Electrocardiogram (ECG) acquisition and transmitting the data by RF communication module.

  • PDF

System Design and Control of an Autonomous Stair Climbing Robot

  • Kim, Dong-Hwan;Hong, Young-Ho;Kim, Sangsu;Jwa, Geun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.104.3-104
    • /
    • 2002
  • A quadruped stair robot introduced here plays a role in monitoring and moving some place where an operator can not reach or when he may not keep watching. It has several features that travels and poses variable position by four caterpillars and quadruped typed arms, transmits an image and command data via RF wireless and network communication. The robot can balance itself when it moves up and down on a slope by using the quadruped mechanism. The robot vision scans ahead before it moves, and the captured image is transferred to a main computer via a RF image module. The main computer analyzes the obstacle, and when it is found the obstacle, the robot avoids from the obstacle and keep moving f...

  • PDF

CFD Simulation Tool for Anode-Supported Flat-Tube Solid Oxide Fuel Cell

  • Youssef M. Elsayed.;Lim, Tak-Hyoung;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • 제9권4호
    • /
    • pp.151-157
    • /
    • 2006
  • A two-dimensional numerical model to study the performance of anode-supported flat-tube solid oxide fuel cell (SOFC) far the cross section of the cell in the flow direction of the fuel and air flows is developed. In this model a mass and charge balance, Maxwell-Stefan equation as well as the momentum equation by using, Darcy's law are applied in differential form. The finite element method using FEMLAB commercial software is used for meshing, discritization and solving the system of coupled differential equations. The current density distribution and fuel consumption as well as water production are analyzed. Experimental data is used to verify a predicted voltage-current density and power density versus current density to judge on the model accuracy.