• Title/Summary/Keyword: Bakun hydroelectric project

Search Result 4, Processing Time 0.018 seconds

Design of the reinforced concrete lining in bakun diversion tunnels (말레이지아 바쿤 가배수로 터널의 철근콘크리트 라이닝 설계)

  • 지왕률;임태정
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.20-26
    • /
    • 1999
  • The completion of the Bakun Diversion Tunnel is subsequently to the Main Dam construction. Therefore, the completion date is very important for the Bakun Hydroelectric Project. Generally, the tunnel lining work as a finishing phase of the tunnelling project occupies a important portion as well as an excavation and a support work of the tunnels in respect to the construction cost and period. Internal section of Bakun Diversion Tunnel is designed circular shape to reduce the roughness of the water flow with 12 meters in diameter of total length 4314.6 meters of 3 tunnels. The lining thickness is varied between 500 mm and 700 mm depending on the structural condition. From the original Tender design of the Bakun tunnels, the required quantity of steel bars was 5,985 ton designed by Reinforced Concrete (RC) through the entire tunnel linings. During the detail design stage by the consideration of the rock conditions and various load conditions, we could suggest five kinds of RC lining type including plain concrete lining type. Through the detail design modification, we could reduce the required amount of steel bars to 2,178 ton, as a half of original Bill of Quantity. Finally, this design modification give us the time and cost saving effect to catch up the construction progress in time.

  • PDF

Rock Support Design of Bakun Tunnelling Project in Sarawak, Malaysia (바쿤 가배수로 터널의 최적지보설계)

  • 지왕률
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.296-306
    • /
    • 1998
  • Ongoing huge Bakun Hydropower project is including the construction of a 210 m height hydroelectric rockfill dam with an installed capacity of 2,520 MW and a power transmission system connecting to the existing networks between Sarawak and peninsula Malaysia. In order to allow the main dam construction during the dry season, the Ballui river will have to be detoured through 3 concrete lined diversion tunnels with an internal diameter of 12 m and a length of 1,400 m each. The geology of Bakun site belongs to the several thousand meters thick Belaga formation deposited from the late Cteteceous to the early Teriary in the Northwest Borneo geosyncline. The orientation of the bedding plane, strike at N55$^{\circ}$E to N70$^{\circ}$E and dip at 50$^{\circ}$SE to 70$^{\circ}$SE, is developed uniformly in Bakun sedimentary rocks. Rock mechanical characteristics of Bakun site have been classified into 4 rock mass types(RMT) depending on the degree of weathering and the occurrence of rock jointing with RMR. Graywacke(Sandstone) as well as Shale can take place together in the same rock mass type if their rock mass properties are similar. It was summarized the rock support type and support system design of underground diversion tunnels in view of rock mechanics.

  • PDF

Design of Sedimentary Rock Slopes in River Diversion Works (가배수로 터널공사의 퇴적암 사면 안정화 설계)

  • Jee, Wang-Ruel
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.17-32
    • /
    • 1998
  • The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia, The power station will consist of a 210m height concrete faced rockfill dam. During the construction of the dam and the power facilities the Balui river has to be diverted by three diversion tunnels with a length of some 1,400m each. The inner diameter of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet and outlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four. defined Rock Mass Types (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each 'global' slope without any rock support and shotcrete system. In the second stage, it is calculated for each 'local'slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF

Soft Sedimentary Rock Slopes Design of Diversion Tunnel

  • Jee, Warren Wangryul
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.63-79
    • /
    • 2007
  • Several remedial works were attempted to stabilize the collapsed area of the inlet slopes of diversion tunnel, but prevention of any further movement was being only carried out at beginning stage by filling the area with aggregates and rock debris, after several cracks had been initiated and developed around the area. The extra specialty developed folding zone is consisted with highly weathered Greywacke and Black shale. The suggested solution is to improve the properties of the rock mass of failed area by choosing the optimum level of reinforcement through the increment of slope rock support design so as to control the movement of slopes during the re-excavation. The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia. The power station will consist of a 210m height Concrete Faced Rockfill Dam. During the construction of the dam and the power facilities the Balui River has to be diverted of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four defined Rock Mass Type (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each "global" slope without any rock support and shotcrete system. In the second stage, it is calculated for each "local" slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF