• Title/Summary/Keyword: Bagasse

Search Result 74, Processing Time 0.034 seconds

Development and mechanical properties of bagasse fiber reinforced composites

  • Cao, Yong;Goda, Koichi;Shibata, Shinichi
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.283-298
    • /
    • 2007
  • Environment-friendly composites reinforced with bagasse fiber (BF), a kind of natural fiber as the remains from squeezed sugarcane, were fabricated by injection molding and press molding. As appropriate matrices for injection molding and press molding, polypropylene (PP) and polycaprolactone-cornstarch (PCL-C) were selected, as a typical recyclable resin and biodegradable resin, respectively. The mechanical properties of BF/PP composites were investigated in view of fiber mass fraction and injection molding conditions. And the mechanical properties and the biodegradation of BF/PCL composites were also evaluated. In the case of injection molding, the flexural modulus increased with an increase in fiber mass fraction, and the mechanical properties decreased with an increase in cylinder temperature due to the thermal degradation of BF. The optimum conditions increasing the flexural properties and the impact strength were $90^{\circ}C$ mold temperature, 30 s injection interval, and in the range of 165 to $185^{\circ}C$ cylinder temperature. On the other hand, as to BF/PCL-C fully-green composites, both the flexural properties and the impact strength increased with an increase in fiber mass fraction. It is considered that the BF compressed during preparation could result in the enhancement in mechanical properties. The results of the biodegradability test showed the addition of BF caused the acceleration of weight loss, which increased further with increasing fiber content. This reveals that the addition and the quantities of BF could promote the biodegradation of fully-green composites.

Sound Absorption of Natural Fiber Composite from Sugarcane Bagasse and Coffee Silver Skin

  • Wachara KALASEE;Putipong LAKACHAIWORAKUN;Visit EAKVANICH;Panya DANGWILAILUX
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.470-480
    • /
    • 2023
  • This study aimed to develop a sound-absorbing composite using sugarcane bagasse (SB) and coffee silver skin (CS) as raw materials. The composite boards were manufactured by bonding the fibers with Melamine Urea-Formaldehyde adhesive, ensuring a consistent thickness of 30 mm. Various densities were employed, namely 380, 450, and 520 kg/m3. The samples were fabricated with different fiber ratios, including SB100%, SB75% with CS25%, and SB50% with CS50%. The sound absorption coefficient (SAC) and noise reduction coefficient (NRC) were measured using the impedance tube method within a frequency range of 63-6,300 Hz. The experimental results revealed that the mixing ratio of CS exerted a notable influence on enhancing the SAC, while the density of the composite board exhibited a significant impact on increasing both the SAC and NRC. Among the densities tested, the optimal value was observed at 520 kg/m3, yielding a SAC value of 0.65 at a frequency of 1,000 Hz and an NRC value of 0.55 for the SB50-CS50 composite plate. These findings underscore the importance of considering the CS mixing ratio and composite board density when aiming to optimize sound absorption properties.

Extraction of β-glucosidase from Bagasse Fermented by Mixed Culture under Solid State Fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.197-203
    • /
    • 2014
  • Various parameters such as solvent selection, concentration, solid/liquid ratio, soaking time, temperature, stationary, shaking conditions, and repeated extractions were investigated in order to determine the optimum extraction conditions of ${\beta}$-glucosidase from bagasse fermented by mixed culture of Aspergillus niger NRC 7A and Aspergillus oryzae NRRL 447. Among various solvents tested, non ionic detergents gave the best results than the inorganic or organic salt solutions and distilled water. The optimum conditions for extraction of ${\beta}$-glucosidase were 30 min soaking time at $40^{\circ}C$ under shaking condition at 150 rpm, with solid/liquid ratio 1:15 (w/v), which yielded $2882.74{\pm}95.52U/g$ fermented culture (g fc) of enzyme activity. With repeated washes under the above optimum conditions, the results showed that enzyme extracted in the $1^{st}$ and $2^{nd}$ washes represents about 90% of the total activity.

Sugarcane Bagasse Hydrolysis Using Yeast Cellulolytic Enzymes

  • de Souza, Angelica Cristina;Carvalho, Fernanda Paula;Silva e Batista, Cristina Ferreira;Schwan, Rosane Freitas;Dias, Disney Ribeiro
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1403-1412
    • /
    • 2013
  • Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with $H_2SO_4$. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant ${\beta}$-glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% $H_2SO_4$ for 30 min at $150^{\circ}C$. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good ${\beta}$-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production.

Solid Substrate and Submerged Culture Fermentation of Sugar Cane Bagasse for the Production of cellulase and Reducing Sugars by a Local Isolate, Aspergillus terreus SUK-1

  • Wan Mohtar, Yusoff;Massadeh, Muhannad Illayan;Kader, Jalil
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.770-775
    • /
    • 2000
  • Several process parameters were studied to ascertain the effect on degradation of sugar cane bagasse in relation to the production of cellulase enzyme and reducing sugars by Solid Substrate Fermentation (SSF) and Submerged Culture Fermentation (SCF) of Aspergillus terreus SUK-1. The effect of air-flow rate (0-1.3 v/v/m), of different ratios of substrate weight to liquid volume (1:6, 1:10, 1:20, and 1:30 w/v, g/ml), scale-up effect (10, 20, and 100 times of 1:10 ration, w/v) and the effect of temperature (30, 40, 50, and $60^{\circ}C$) in SSF were studied. Air-flow rate of 1.0 v/v/m gave the highest enzyme activity (FPase 0.25 IU/ml, CMCase 1.24 IU/ml) and reducing sugars concentration (0.72 mg/ml). Experiment using 1:10 ratio (w/v) was found to support maximum cellulase activity (FPase 0.58 IU/ml, CMCase 1.97 IU/ml) and reducing sugar concentration (1.23 mg/ml). Scaling-up the ratio of 1:10(w/v) by a factor of 20 gave the highest cellulase activity (FPase 0.71 IU/ml, CMCase 2.25 IU/ml) and reducing sugar concentration (3.67 mg/ml). The optimum temperature for cellulase activity and reducing sugar production was $50^{\circ}C$(FPase 0.792 IU/ml, CMCase 2.25 IU/ml and 3.85 mg/ml for reducing sugar concentration). For SCF, the activity of cellulase enzyme and reducing sugar concentration was found to be lower than that obtained for SSF. The highest cellulase activity obtained in SCF was 50% lower than the highest cellulase activity in SSF, while for reducing sugar concentration, the highest concentration obtained in SCF was 90% lower than that obtained in SSF.

  • PDF

Growth, Feed Efficiency, Behaviour, Carcass Characteristics and Meat Quality of Goats Fed Fermented Bagasse Feed

  • Ramli, M.N.;Higashi, M.;Imura, Y.;Takayama, K.;Nakanishi, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1594-1599
    • /
    • 2005
  • The effects of long-term feeding of diets based on bermudagrass hay supplemented with lucerne hay cube (LH) or fermented bagasse feed (FBF) on the growth rate, feed efficiency, behaviour, gut development, carcass characteristics and meat quality of goats were investigated. Six spring-born 8-month-old male crossbred (Japanese Saanen${\times}$Tokara native goats) bucks weighing mean 21.6 kg were allotted to 2 treatment groups (3 animals each) and each animal had ad libitum access to feeds, i.e. bermudagrass hay (basal diet)+LH or FBF throughout the experiment. The FBF was produced by the solid-state fermentation of substrates containing dried sugarcane bagasse mixed with wheat bran in a ratio of 1:3 (w/w DM) with Aspergillus sojae. The live body weight, final weight and average daily gain were not different between treatments. Average basal diet intake of goats fed FBF diet was significantly higher than that fed LH diet (p<0.05), but average dry matter intake (DMI; g/day and g/$W^{0.75}$), feed conversion ratio, digestible crude protein (DCP) and total digestible nutrients (TDN) intake of experimental diets were not significantly different between treatments. Goats fed on LH and FBF diets had similar eating, rumination, resting and drinking behaviours, and blood constituents except for phosphorus content. Slaughter and carcass weights, net meat percentage [(total meat/carcass weight)${\times}$100], loin ratio [(loin/total meat)${\times}$100] and rib-eye area were not different between treatments. However, goats fed FBF diet had lower dressing percentage and higher bone/muscle ratio compared with goats fed LH diet (p<0.01). Empty gut and guts fill of goats fed FBF diet were significantly greater (p<0.05 and p<0.01, respectively) than those fed LH diet. The weights of rumen and abomasum were also significantly heavier in goats fed FBF diet (p<0.05), but the length and density of papillae of rumen in goats were not different between treatments. Although meat composition of loin was not different in both groups, the meat of goats fed FBF diet was superior to that of LH diet in flavor, aroma and overall quality of loin (p<0.01). In conclusion, the nature of the diet consumed voluntarily did not affect subsequent growth, nutrient intake and behaviour of goats but had an influence on carcass traits and sensory evaluation of meat partly, when either of LH or FBF was fed with bermudagrass hay.

Performance of concrete modified with SCBA and GGBFS subjected to elevated temperature

  • Palaskar, Satish Muralidhar;Vesmawala, Gaurang R.
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.203-218
    • /
    • 2020
  • This research paper presents the outcomes in terms of mechanical and microstructural characteristics of binary and ternary concrete when exposed to elevated temperature. Three parameter were taken into account, (a) elevated temperature (i.e., 200, 400, 600 and 800℃) (b) binary concrete with cementitious material sugarcane bagasse ash (SCBA) and ground granulated blast furnace slag (GGBFS) replacement percentage (i.e., 0, 15, 20, 25 and 30%) and (c) ternary concrete with cementitious material SCBA and GGBFS replacement percentage (i.e., 0, 15, 20, 25 and 30%). A total of 285 standard cube specimens (150 mm × 150 mm × 150 mm) containing Ordinary Portland Cement (OPC), SCBA, and GGBFS were made. These specimens then exposed to several elevated temperatures for 2 h, afterword is allowed to cool at room temperature. The following basic physical, mechanical, and microstructural characteristics were then determined and discussed. (a) mass loss ratio, (b) ultrasonic pulse velocity (UPV) (c) physical behavior, (d) compressive strength, and (e) field emission scanning electron microscope (FESEM). It was found that compressive strength increases up to 400℃; beyond this temperature, it decreases. UPV value and massloss decrease with increase in temperature as well as the change in color and crack were observed at a higher temperature.

Effective adsorption of lead and copper from aqueous solution by samaneasaman and banana stem

  • Harish, Narayana;Janardhan, Prashanth;Sangami, Sanjeev
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.225-237
    • /
    • 2018
  • The sorption of metal ions with low-cost adsorbents plays an important role in sustainable development. In the present study, the efficacy of sugarcane bagasse, rain tree fruits (samaneasaman), banana stem and their mixtures, used as bio-sorbents, in the removal of Cu(II) and Pb(II) ions from aqueous solution is evaluated. Batch studies are conducted, and residual ions were measured using Inductively Coupled Plasma (ICP)-atomic spectrometer. Effect of pH, initial metal ion concentration, reaction time and adsorbent dosage are studied. The Pb(II) removal efficiency was observed to be 97.88%, 98.60% and 91.74% for rain tree fruits, banana stem and a mixture of adsorbents respectively. The highest Cu(II) ion removal was observed for sugarcane bagasse sorbent with an efficiency of 82.10% with a pH of 4.5 and a reaction time of 90 min. Finally, desorption studies were carried out to study the leaching potential of adsorbent, and it was found that the adsorbent is stable in water than the other leaching agents such as HCl, ammonium acetate, Sodium EDTA. Hence, these adsorbents can be effectively used for the removal of these heavy metals.

Optimization of Cellulase Production from Paenibacillus jamilae BRC 15-1 (Paenibacillus jamilae BRC15-1의 Cellulase 생산 최적화)

  • Cha, Young-Lok;Yoon, Young-Mi;Yoon, Ha-Yan;Kim, Jung Kon;Yang, Ji-Young;Na, Han-Beur;Ahn, Jong-Woong;Moon, Youn-Ho;Choi, In-Hu;Yu, Gyeong-Dan;Lee, Ji-Eun;An, Gi Hong;Lee, Kyeong-Bo
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.283-290
    • /
    • 2015
  • In this study was selected the cellulolytic microorganism and investigated optimum condition of cellulase production for the cellulosic bioethanol production. A bacterial strain Paenibacillus jamilae BRC15-1, was isolated from soil of domestic reclaimed land. For optimizing cellulase production from the selected strain, various culture parameters were investigated such as culture medium, pH (pH 4~10), temperature ($25{\sim}50^{\circ}C$) and culture time (2~72 h). As a result, P. jamilae BRC15-1 efficiently produced cellulase from cellulosic biomass under following conditions: 24 h of culture time (pH 7, $40^{\circ}C$) in manufactured media of CMC (carboxymethyl cellulose) with peptone. Optimum saccharifying condition of crude enzyme produced from P. jamilae BRC15-1 was identified on pH 6 and $40^{\circ}C$ of reaction temperature, respectively. This crude enzyme from P. jamilae BRC15-1 was used for saccharification of pretreated sweet sorghum (Sorghum bicolor var. dulciusculum Ohwi) bagasse under the optimal condition. Finally, pretreated sweet sorghum bagasse including 0.1 g of glucan was saccharified by crude enzyme of P. jamilae BRC15-1 into 2.75 mg glucose, 0.79 mg xylose and 1.12 mg arabinose.

Effects of Fiber Characteristics on the Greaseproofing Property of Paper

  • Perng, Yuan-Shing;Wang, Eugenei-Chen;Kuo, Lan-Sheng;Chen, Yu-Chun
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.231-237
    • /
    • 2006
  • Grease barrier food containers are commonly used for packaging of fast food, cooked food, and food in general. Greaseproofing is also used for certificate paper and label paper etc. Different pulp raw materials, due to their different fiber morphology and chemical compositions, produce papers of varying characteristics. We used optical photomicroscopy and fiber analysis data to evaluate fiber morphology and traits under various beating conditions in order to understand which pulp raw materials produced superior greaseproofing property when a fluorinated greaseproofing agent was added internally. The experiment studied 9 species of pulps, including 2 softwood (northern pine and radiata pine) bleached kraft pulps which were beaten to 550 and 350 mL CSF, respectively; 3 hardwoods (eucalypts, acacia, mixed Indonesian hardwoods) bleached kraft pulps which were beaten to 450 and 250 mL CSF, respectively; and nonwood fibers of reed, bagasse, and abaca. A fluorinated greaseproofing chemical at 0.12% dosage with respect to dry pulp was added to each pulp preparation and formed handsheets. A total of 67 sets of handsheets were prepared, and their basis weights, thickness, bulks, opacities, wet opacities, air resistance, water absorption and degrees of greaseproofing were measured for an overall evaluation of pulp and freeness on greaseproofing papers. The experimental fiber length, coarseness and distribution characteristics and the greaseproofing results suggest that softwood pulps (radiate pine > northern pine) were superior to hardwood pulps (eucalypts > acacia > mixed Indonesian hardwoods). The unbeaten pulps gave papers with high porosities and nearly devoid of greaseproofing property. Greaseproofing is proportional to air resistance. Among the nonwood fibers, bagasse had the best greaseproofing property, followed by reed and abaca was the poorest. With regards to waterproofing property, hardwood pulps (mixed Indonesian hardwoods > acacia > eucalypts) were better than softwood pulps (northern pine > radiate pine). Among the Nonwood fibers, reed had the highest waterproofing property, and it was followed by abaca, while bagasse had the poorest waterproofing characteristic. In summary, bleached kraft northern pine, eucalypts and reed pulps were best suited for making greaseproofing papers, Freeness of the pulps should be kept at $200{\sim}280mL$ CSF for optimal performance.

  • PDF