• 제목/요약/키워드: Baer ring

검색결과 26건 처리시간 0.037초

SOME REMARKS ON SKEW POLYNOMIAL RINGS OVER REDUCED RINGS

  • Kim, Hong-Kee
    • East Asian mathematical journal
    • /
    • 제17권2호
    • /
    • pp.275-286
    • /
    • 2001
  • In this paper, a skew polynomial ring $R[x;\alpha]$ of a ring R with a monomorphism $\alpha$ are investigated as follows: For a reduced ring R, assume that $\alpha(P){\subseteq}P$ for any minimal prime ideal P in R. Then (i) $R[x;\alpha]$ is a reduced ring, (ii) a ring R is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring) if and only if the skew polynomial ring $R[x;\alpha]$ is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring).

  • PDF

SOME RESULTS ON A DIFFERENTIAL POLYNOMIAL RING OVER A REDUCED RING

  • Han, Jun-Cheol;Kim, Hong-Kee;Lee, Yang
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.89-96
    • /
    • 2000
  • In this paper, a differential polynomial ring $R[x;\delta]$ of ring R with a derivation $\delta$ are investigated as follows: For a reduced ring R, a ring R is Baer(resp. quasi-Baer, p.q.-Baer, p.p.-ring) if and only if the differential polynomial ring $R[x;\delta]$ is Baer(resp. quasi-Baer, p.q.-Baer, p.p.-ring).

  • PDF

SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS

  • HAN JUNCHEOL
    • 대한수학회지
    • /
    • 제42권1호
    • /
    • pp.53-63
    • /
    • 2005
  • Let R be a ring R and ${\sigma}$ be an endomorphism of R. R is called ${\sigma}$-rigid (resp. reduced) if $a{\sigma}r(a) = 0 (resp{\cdot}a^2 = 0)$ for any $a{\in}R$ implies a = 0. An ideal I of R is called a ${\sigma}$-ideal if ${\sigma}(I){\subseteq}I$. R is called ${\sigma}$-quasi-Baer (resp. right (or left) ${\sigma}$-p.q.-Baer) if the right annihilator of every ${\sigma}$-ideal (resp. right (or left) principal ${\sigma}$-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[$x;{\sigma}$] of a ring R is investigated as follows: For a ${\sigma}$-rigid ring R, (1) R is ${\sigma}$-quasi-Baer if and only if A is quasi-Baer if and only if A is $\={\sigma}$-quasi-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$ (2) R is right ${\sigma}$-p.q.-Baer if and only if R is ${\sigma}$-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\={\sigma}$-p.q.-Baer if and only if A is right $\={\sigma}$-p.q.-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$.

ON REFLEXIVE PRINCIPALLY QUASI-BAER RINGS

  • Kim, Jin Yong
    • Korean Journal of Mathematics
    • /
    • 제17권3호
    • /
    • pp.233-236
    • /
    • 2009
  • We investigate in this paper some equivalent conditions for right principally quasi-Baer rings to be reflexive. Using these results we are able to prove that if R is a reflexive right principally quasi-Baer ring then R is a left principally quasi-Baer ring. In addition, for an idempotent reflexive principally quasi-Baer ring R we show that R is prime if and only if R is torsion free.

  • PDF

THE COHN-JORDAN EXTENSION AND SKEW MONOID RINGS OVER A QUASI-BAER RING

  • HASHEMI EBRAHIM
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2006
  • A ring R is called (left principally) quasi-Baer if the left annihilator of every (principal) left ideal of R is generated by an idempotent. Let R be a ring, G be an ordered monoid acting on R by $\beta$ and R be G-compatible. It is shown that R is (left principally) quasi-Baer if and only if skew monoid ring $R_{\beta}[G]$ is (left principally) quasi-Baer. If G is an abelian monoid, then R is (left principally) quasi-Baer if and only if the Cohn-Jordan extension $A(R,\;\beta)$ is (left principally) quasi-Baer if and only if left Ore quotient ring $G^{-1}R_{\beta}[G]$ is (left principally) quasi-Baer.

SKEW LAURENT POLYNOMIAL EXTENSIONS OF BAER AND P.P.-RINGS

  • Nasr-Isfahani, Alireza R.;Moussavi, Ahmad
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1041-1050
    • /
    • 2009
  • Let R be a ring and ${\alpha}$ a monomorphism of R. We study the skew Laurent polynomial rings R[x, x$^{-1}$; ${\alpha}$] over an ${\alpha}$-skew Armendariz ring R. We show that, if R is an ${\alpha}$-skew Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if R[x, x$^{-1}$; ${\alpha}$] is a Baer (resp. p.p.-) ring. Consequently, if R is an Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if R[x, x$^{-1}$] is a Baer (resp. p.p.-)ring.

ORE EXTENSIONS OVER σ-RIGID RINGS

  • Han, Juncheol;Lee, Yang;Sim, Hyo-Seob
    • East Asian mathematical journal
    • /
    • 제38권1호
    • /
    • pp.1-12
    • /
    • 2022
  • Let R be a ring with an endomorphism σ and a σ-derivation δ. R is called (σ, δ)-Baer (resp. (σ, δ)-quasi-Baer, (σ, δ)-p.q.-Baer, (σ, δ)-p.p.) if the right annihilator of every right (σ, δ)-set (resp., (σ, δ)-ideal, principal (σ, δ)-ideal, (σ, δ)-element) of R is generated by an idempotent of R. In this paper, for a given Ore extension A = R[x; σ, δ] of R, the following properties are investigated: If R is a σ-rigid ring in which σ and δ commute, then (1) R is (σ, δ)-Baer if and only if R is (σ, δ)-quasi-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-quasi-Baer; (2) R is (σ, δ)-p.p. if and only if R is (σ, δ)-p.q.-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-p.p. if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-p.q.-Baer.

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

Baer and Quasi-Baer Modules over Some Classes of Rings

  • Haily, Abdelfattah;Rahnaou, Hamid
    • Kyungpook Mathematical Journal
    • /
    • 제51권4호
    • /
    • pp.375-384
    • /
    • 2011
  • We study Baer and quasi-Baer modules over some classes of rings. We also introduce a new class of modules called AI-modules, in which the kernel of every nonzero endomorphism is contained in a proper direct summand. The main results obtained here are: (1) A module is Baer iff it is an AI-module and has SSIP. (2) For a perfect ring R, the direct sum of Baer modules is Baer iff R is primary decomposable. (3) Every injective R-module is quasi-Baer iff R is a QI-ring.