• Title/Summary/Keyword: Baekdu volcano

Search Result 31, Processing Time 0.022 seconds

Inundation Hazard Zone Created by Large Lahar Flow at the Baekdu Volcano Simulated using LAHARZ

  • Park, Sung-Jae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • The Baekdu volcano (2,750 m a.s.l.) is located on the border between Yanggando Province in North Korea and Jilin Province in China. Its eruption in 946 A.D. was among the largest and most violent eruptions in the past 5,000 years, with a volcanic explosivity index (VEI) of 7. In this study, we processed and analyzed lahar-inundation hazard zone data, applying a geographic information system program with menu-driven software (LAHARZ)to a shuttle radar topography mission 30 m digital elevation model. LAHARZ can simulate inundation hazard zones created by large lahar flows that originate on volcano flanks using simple input parameters. The LAHARZ is useful both for mapping hazard zones and estimating the extent of damage due to active volcanic eruption. These results can be used to establish evacuation plans for nearby residents without field survey data. We applied two different simulation methods in LAHARZ to examine six water systems near Baekdu volcano, selecting weighting factors by varying the ratio of height and distance. There was a slight difference between uniform and non-uniform ratio changes in the lahar-inundation hazard zone maps, particularly as slopes changed on the east and west sides of the Baekdu volcano. This result can be used to improve monitoring of volcanic eruption hazard zones and prevent disasters due to large lahar flows.

A Review on Monitoring Mt. Baekdu Volcano Using Space-based Remote Sensing Observations (인공위성 원격탐사를 이용한 백두산 화산 감시 연구 리뷰)

  • Hong, Sang-Hoon;Jang, Min-Jung;Jung, Seong-Woo;Park, Seo-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1503-1517
    • /
    • 2018
  • Mt. Baekdu is a stratovolcano located at the border between China and North Korea and is known to have formed through its differentiation stage after the Oligocene epoch in the Cenozoic era. There has been a growing interest in the magma re-activity of Mt. Baekdu volcano since 2010. Several research projects have been conducted by government such as Korea Meteorological Administration and Korea Institute of Geoscience and Mineral Resources. Because, however, the Mt. Baekdu volcano is located far from South Korea, it is quite difficult to collect in-situ observations by terrestrial equipment. Remote sensing is a science to analyze and interpret information without direct physical contact with a target object. Various types of platform such as automobile, unmanned aerial vehicle, aircraft and satellite can be used for carrying a payload. In the past several decades, numerous volcanic studies have been conducted by remotely sensed observations using wide spectrum of wavelength channels in electromagnetic waves. In particular, radar remote sensing has been widely used for volcano monitoring in that microwave channel can gather surface's information without less limitation like day and night or weather condition. Radar interferometric technique which utilized phase information of radar signal enables to estimate surface displacement such as volcano, earthquake, ground subsidence or glacial movement, etc. In 2018, long-term research project for collaborative observation for Mt. Baekdu volcano between Korea and China were selected by Korea government. A volcanic specialized research center has been established by the selected project. The purpose of this paper is to introduce about remote sensing techniques for volcano monitoring and to review selected studies with remote sensing techniques to monitor Mt. Baekdu volcano. The acquisition status of the archived observations of six synthetic aperture radar satellites which are in orbit now was investigated for application of radar interferometry to monitor Mt. Baekdu volcano. We will conduct a time-series analysis using collected synthetic aperture radar images.

A Study on Integrated Assessment of Baekdu Mountain Volcanic Aisaster risk Based on GIS (GIS기법을 이용한 백두산 화산재해 종합평가 연구)

  • Xiao-Jiao, Ni;Choi, Yun Soo;Ying, Nan
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.77-87
    • /
    • 2014
  • Recently there are many disasters caused by volcanic activities such as the eruptions in Tungurahua, Ecuador(2014) and $Eyjafjallaj\ddot{o}kull$, Iceland(2010). Therefore, it is required to prepare countermeasures for the disasters. This study analyzes the Baekdu Mountain area, where is the risky area because it is active volcano, based on the observed data and scientific methods in order to assess a risk, produce a hazard map and analyze a degree of risk caused by the volcano. Firstly, it is reviewed for the research about the Baekdu mountain volcanic eruption in 1215(${\pm}15$ years) done by Liu Ruoxin. And the factors causing volcanic disaster, environmental effects, and vulnerability of Baekdu Mountain are assessed by the dataset, which includes the earthquake monitoring data, the volcanic deformation monitoring data, the volcanic fluid geochemical monitoring data, and the socio-economic statistics data. A hazard, especially caused by a volcano, distribution map for the Baekdu Mountain Area is produced by using the assessment results, and the map is used to establish the disaster risk index system which has the four phases. The first and second phases are very high risky area when the Baekdu Mountain erupts, and the third and fourth phases are less dangerous area. The map shows that the center of mountain has the first phase and the farther area from the center has the lower phase. Also, the western of Baekdu Mountain is more vulnerable to get the risk than the eastern when the factors causing volcanic disasters are equally applied. It seems to be caused by the lower stability of the environment and the higher vulnerability.

A History of Geomorphological Researches on Baekdusan Volcano (백두산 화산지형에 관한 연구사)

  • Park, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.75-85
    • /
    • 2020
  • Few studies have dealt with the question of when Mt. Baekdusan became known as a volcano. Attention has been focused rather on the issue of establishing the boundary between the Joseon Dynasty and the Qing Dynasty than the scientific nature of Baekdusan as a volcano. It is only in the late Joseon Dynasty that Park Jong (1764), who was the scholar of the Gwanbuk region, authored the first travel journal on Mt. Baekdu and described poseok. Due to the scientific curiosity of Westerners on the existence of mysterious snow peak on the border, it was first introduced to the Royal Geographical Society by a British man, H.E.M. James in 1887, who revealed for the first time that Mt. Baekdu is a dead volcano, and that the white color on the top is due to wide-spread pumice. Russian expedition teams including Strel'bitskii (Стрельбицкий, 1894, and Garin (Гарин-Михайловский, 1898), also explored this mountain seeking natural resources and territory of East Asia and the Manchurian region in pursuit of Russian Imperial interests explored and described Baekdusan as a volcano.

Volcanological Interpretation of Historic Record of Ash Cloud Movement from Mt. Baegdu Volcano on October 21, 1654 (백두산 화산의 1654년 10월 21일 화산재구름 이동 기록에 대한 화산학적 고찰)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The volcanic history of the volcanic ash cloud movement recorded in the annals of the Choson dynasty in 1654, presumably due to explosive eruptions from Mt. Baekdu volcano. On October 21, 1654, volcanic ash and volcanic gas erupted from Mt. Baekdu could be interpreted as volcanic ash, which was transported to low altitude by winds of north and northeast winds and descended to the south of the peninsula along with volcanic ash clouds. The affected area appeared northward in the southern boundary of Hamgyeongdo, which is estimated to have moved the volcanic ash from Mt. Baekdu to the south of the Korean peninsula. Clouds of volcanic ash have passed through Jeokseong and Jangdan area, Gyeonggido about 500 km away from Mt. Baekdu. This is interpreted as a result of the formation of a volcanic ash cloud along the ground in a curved shape due to the influence of the prevailing wind, which was formed by Plinian-type eruption at Mt. Baekdu. This is reproduced by numerical simulations on the similar weather pattern model.

Case Studies of Predicting Volcanic Ash by Interactive Realtime Simulator (실시간 대화형 화산재 확산 예측 시스템에 의한 화산재 확산 예측)

  • Kim, Hae-Dong;Lee, Jun-Hee
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.2121-2127
    • /
    • 2014
  • Analyzing the observational data of volcanic activities around the northern part of Korean peninsula, the odds of volcano eruption increases continuously. For example, the cumulative seismic moment and frequence observed near Mt. Baekdu show a sudden increased values. In this study, predicting the diffusion of volcanic ash for two cases were carried out by using interactive realtime simulator, which was developed during last 2 years as a research and development project. The first case is Sakurajima volcano (VEI=3) erupted in August 2013. The second case is assumed as the volcanic eruption at Mt. Baekdu (VEI=7) under landing circumstance of typhoon Maemi (August 2003) in Korean peninsula. The synoptic condition and ash diffusion for the two cases were simulated by WRF(Weather Research and Forecast) model and Lagrangian dispersion model, respectively. Comparing the simulated result of the first case (i.e., Sakurajima volcano) with satellite image, the diffusion pattern show acceptable result. The interactive realtime simulator can be available to support decision making under volcanic disaster around East Asia by predicting several days of ash dispersion within several minutes with ordinary desktop personal computer.

Application of JERS-1 SAR Interferometry to the Deformation of Mt. Baekdu Stratovolcano

  • Kim, S.W.;Jeong, H.S.;Won, J.S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1073-1075
    • /
    • 2003
  • We apply the radar interferometry technique to JERS-1 SAR data sets for detection of slow surface deformation occurred in Mt. Baekdu for a 6-year period (from 1992 to 1998). A series of interferograms has been constructed, and they indicated slow uplift deformation around the volcano. However, it is not conclusive because most interferometric fringes correlate with topographic elevation. It is necessary to remove trophospheric effects in the future works.

  • PDF

Conceptual Design for the Dispersal and Deposition Modelling of Fallout Ash from Mt. Baekdu Volcano (백두산 천지 화산의 화산재 확산과 침적 모델링을 위한 개념적 설계)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.273-289
    • /
    • 2013
  • Fallout ash is a notorious hazard that can have a variety of damages on agriculture and infrastructure and, most notably to aviation and human health. This study discusses the design of a conceptual model to aid in modeling the dispersal and deposition of ash from Mt. Baekdu volcano. It includes a discussion of assumptions and boundary conditions of the model as well as a detailed diagram of the conceptual model, complete with input parameters, units and equations. The two main processes contained within the model are the dispersal and deposition of ash, the outputs obtained from running the model, if designed, would be the total amount of fine ash contained in the eruption column, distance travelled by ash and ash thickness at surface.

Developing Interactive Simulator for Predicting Volcanic Ash (실시간 대화형 화산재 확산 예측 시스템 개발)

  • Kim, Hae-Dong;Lee, Ho-Man
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.527-532
    • /
    • 2014
  • According to the analysis of volcanic observation data around Korean peninsula, the activities of volcano increase continuously. For example, the volcanic eruption of Mt. Sakurajima is an example, and Mt. Baekdu can be another example potentially. In these regards, developing unified system including realtime prediction and 3D visualization of volcano ash are important to prepare the volcanic disaster systematically. In this technical report, an interactive simulator embedding dispersion algorithm and 3D visualization engine is developed. This system can contribute to the realtime prediction of volcanic disaster scientifically.

S-wave Relative Travel Time Tomography for Northeast China (중국 만주지역 S파 상대주시 토모그래피)

  • Kim, Yong-Woo;Kim, Hyo-Ji;Lim, Jung-A;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • The Northeast China is an important site geologically and geophysically because of a huge volcano called Mt. Baekdu, which is one of the largest volcanoes in the world. Signs of eruption have been recently observed and people are keen to its behavior. We carried out relative travel time tomography to investigate the velocity structure between 100 ~ 600 km depth beneath Northeast China. We used teleseismic data during 2009 ~ 2011 recorded in NecessArray provided by IRIS (Incorporated Research Institute for Seismology). The relative observations were obtained by using the multi-channel cross-correlation method. Based on the tomographic results, we observed that the locations beneath which low-velocity zones are observed coincide with the locations of several volcanic regions in Northeast China. A low-velocity anomaly is revealed beneath Mt. Baekdu down to 600 km depth, which is thought to the main origin of the magma supply for Mt. Baekdu. Another low velocity anomaly is observed beneath east of the Datong volcano down to around 300 km depth, which is inferred to be related to an upwelling from deep mantle. We observed a low velocity anomaly beneath the Wudalianchi volcano down to around 200 km depth, which may imply that this volcano has been formed by an upwelling from the asthenosphere.