• 제목/요약/키워드: Bactericidal action

검색결과 70건 처리시간 0.027초

Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis

  • Choi, Jeahyuk;Baek, Kwang-Hyun;Moon, Eunpyo
    • The Plant Pathology Journal
    • /
    • 제30권3호
    • /
    • pp.245-253
    • /
    • 2014
  • Antimicrobial peptides (AMPs) are small but effective cationic peptides with variable length. In previous study, four hexapeptides were identified that showed antimicrobial activities against various phytopathogenic bacteria. KCM21, the most effective antimicrobial peptide, was selected for further analysis to understand its modes of action by monitoring inhibitory effects of various cations, time-dependent antimicrobial kinetics, and observing cell disruption by electron microscopy. The effects of KCM21 on Gram-negative strain, Pseudomonas syringae pv. tomato DC3000 and Gram-positive strain, Clavibacter michiganensis subsp. michiganensis were compared. Treatment with divalent cations such as $Ca^{2+}$ and $Mg^{2+}$ inhibited the bactericidal activities of KCM21 significantly against P. syringae pv. tomato DC3000. The bactericidal kinetic study showed that KCM21 killed both bacteria rapidly and the process was faster against C. michiganensis subsp. michiganensis. The electron microscopic analysis revealed that KCM21 induced the formation of micelles and blebs on the surface of P. syringae pv. tomato DC3000 cells, while it caused cell rupture against C. michiganensis subsp. michiganensis cells. The outer membrane alteration and higher sensitivity to $Ca^{2+}$ suggest that KCM21 interact with the outer membrane of P. syringae pv. tomato DC3000 cells during the process of killing, but not with C. michiganensis subsp. michiganensis cells that lack outer membrane. Considering that both strains had similar sensitivity to KCM21 in LB medium, outer membrane could not be the main target of KCM21, instead common compartments such as cytoplasmic membrane or internal macromolecules might be a possible target(s) of KCM21.

Enterococcus faecium CJNU 2008 균주 생산 박테리오신의 특성 규명 (Characterization of the Bacteriocin from Enterococcus faecium CJNU 2008)

  • 서숙진;양정모;문기성
    • 한국식품위생안전성학회지
    • /
    • 제33권6호
    • /
    • pp.516-520
    • /
    • 2018
  • 박테리오신은 미생물이 생산하는 단백질성의 항균물질이다. 본 연구에서는 Enterococcus faecium CJNU 2008 균주로부터 생산되는 박테리오신에 대한 일부 특성을 규명하였다. 부분 정제 박테리오신은 열처리($100^{\circ}C$ 30분, $121^{\circ}C$ 15분) 및 유기용매(메탄올, 에탄올, 아세톤, 아세토니트릴, 클로로포름)에 대한 안정성이 우수하였으며 효소처리의 경우 Lipase와 ${\alpha}-amylase$에 대해서는 안정하였으나 Protease 처리에서 활성이 소실되었다. 이는 E. faecium CJNU 2008균주가 생산하는 항균물질이 단백질성의 박테리오신임을 추가적으로 증명하는 것이다. 병원성 세균인 Listeria monocytogenes 균주를 지시균으로 사용했을 때 박테리오신은 살균(bactericidal)의 작용양상을 보였다. Tricine-SDS-PAGE를 이용한 박테리오신의 분자량은 6.5 kDa 이하로 확인되었다. 부분 정제된 박테리오신을 이용하여 HPLC법을 활용한 정제를 수행하였으며 크로마토그램 상에서 단일 피크를 얻었을 수 있었다. 앞으로 정제된 박테리오신은 생화학적 분석 등에 활용할 계획이다.

Screening of Lactobacilli Derived from Fermented Foods and Partial Characterization of Lactobacillus casei OSY-LB6A for Its Antibacterial Activity against Foodborne Pathogens

  • Chung, Hyun-Jung;Yousef, Ahmed E.
    • Preventive Nutrition and Food Science
    • /
    • 제14권2호
    • /
    • pp.162-167
    • /
    • 2009
  • Various fermented foods were screened in search of food-grade bacteria that produce bacteriocins active against Gram-negative pathogens. An isolate from a mold-ripened cheese presented antibacterial activity against Gram-positive and Gram-negative bacteria. The most active isolate was identified as Lactobacillus casei by a biochemical method, ribotyping, and membrane lipid analysis, and was designated as OSY-LB6A. The cell extracts of the isolate showed inhibition against Escherichia coli p220, E. coli O157, Salmonella enerica serovar Enteritidis, Salmonella Typhimurium, and Listeria monocytogenes. The antibacterial nature of the cell extract from the isolate was confirmed by eliminating the inhibitory effects of acid, hydrogen peroxide, and lytic bacteriophages. The culture supernatant and cell extract retained antibacterial activity after heating at $60{\sim}100^{\circ}C$ for $10{\sim}20$ min. The activity of the cell extract from Lb. casei was eliminated by pronase and lipase. Finally, the cell extract showed a bactericidal mode of action against E. coli in phosphate buffer solution, but it was bacteriostatic in broth medium and food extracts.

Morphological Changes Induced in Listeria monocytogenes V7 by a Bacteriocin Produced by Pediococcus acidilactici

  • Heo, Seok;Lee, Si-Kyung;Lee, Chi-Ho;Min, Sang-Gi;Park, Jong-Seok;Kim, Hee-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.663-667
    • /
    • 2007
  • Pediococcus acidilactici produces bacteriocin, which kills Listeria monocytogenes. The bactericidal mode of action of the bacteriocin against L. monocytogenes V7 was investigated by transmission electron microscopy. The bacteriocin was purified partially from the cell-free extract using Micro-Cel and cation-exchange chromatography, and the specific activity was increased 1,791 fold. The bacteriocin (6,400 AU/ml) was inoculated with L. monocytogenes V7 and incubated for 0.5h, 1h, 3h, and 6h. The bacteriocin was found to destroy most of the cell wall and released most of the inclusions in the cells after 6 h of incubation. These results suggest that the bactericidal effect of the bacteriocin was due to bacterial lysis.

Characterization and Purification of Acidocin 1B, a Bacteriocin Produced by Lactobacillus acidophilus GP1B

  • Han, Kyoung-Sik;Kim, Young-Hoon;Kim, Sae-Hun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.774-783
    • /
    • 2007
  • In the present study, acidocin 1B, a bacteriocin produced by Lactobacillus acidophilus GP 1B, exhibited profound inhibitory activity against a variety of LAB and pathogens, including Gram-negative bacteria, and its mode of action was to destabilize the cell wall, thereby resulting in bactericidal lysis. Acidocin 1B was found to be heat stable, because it lost no activity when it was heated up to $95^{\circ}C$ for 60 min. It retained approximately 67% of the initial activity after storage for 30 days at $4^{\circ}C$, and 50% of its initial activity after 30 days at $25^{\circ}C$ and $37^{\circ}C$. The molecular mass of acidocin 1B was estimated to be 4,214.65 Da by mass spectrometry. Plasmid curing results indicated that a plasmid, designated as pLA1B, seemed to be responsible for both acidocin 1B production and host immunity, and that the pLA1B could be transformed into competent cells of L. acidophilus ATCC 43121 by electroporation. Our findings indicate that the acidocin 1B and its producer strain may have potential value as a biopreservative in food systems.

Effect of Nisin against Clostridium botulinum During Spore-to-Cell Transformation

  • Chung, Yoon-Kyung;Yousef, Ahmed E.
    • Preventive Nutrition and Food Science
    • /
    • 제12권4호
    • /
    • pp.259-266
    • /
    • 2007
  • It has been proposed that the mode of action of nisin against vegetative cells and spores of Clostridium botulinum is different. However, clear explanation is not available. Therefore, nisin action against vegetative cells and spores of C. botulinum was investigated in this study. Nisin was added at various stages of spore-to-vegetative cell transition and changes to sensitivity to the bacteriocin were observed. Different nisin preparation (Nisaplin or pure nisin) was compared for their activity against different stages of spore transformation of C. botulinum ATCC 25763. Germination was measured by determining loss of heat resistance and observing phase darkening of spores under phase-contrast microscope. Nisin acted bactericidally against vegetative cells, but acted sporostatically against spores of C. botulinum under the same concentration. This bactericidal and sporostatic action of nisin was dependent on the concentration of nisin used. Presence of nisin during spore activation by heat increased subsequent phase darkening and germination rates. However, nisin inhibited the germination and the outgrowth, when it was added after heat activation stage. Findings from this study suggest that the time of addition of nisin is very important for the effective control of spores during the heating process of foods. In addition, it may be possible to apply nisin at the stage of processing that coincides with the most sensitive stage of spore transformation.

Antibiosis and Bacteriocin Production of Lactic Acid Bacteria Isolated from Kimchi

  • Bae, Sung-Sook;Cheol Ahn
    • Preventive Nutrition and Food Science
    • /
    • 제2권2호
    • /
    • pp.109-120
    • /
    • 1997
  • In order to elucidate roles of lactic acid bacteria(LAB) for the antibiosis occurring in th fermenting environment of Kimchi, 2.052 strains of LAB were isolated from Kimchi. Fifty tow strains which showed antagonistic effect against 4 indicator strains were finally selected and investigated. Based upon responses to protease treatment, antibiosis of the 52 strains of LAB were classified into 3 types. Type A antibiosis resulted from action of antibiotic-like substances which were not affected by protease treatment and which had broad action spectra against even natural inhabitants of Kimchi. Type B antibiosis was due to bacteriocin-like substances which were very sensitive to treatment of protease and more effective against foreign bacteria than original inhabitant microflora. Type C antibiosis was owing to proteinaceous compounds which were activated or induced by the presence of protease and then exerted antibacterial activities. Therefore, lactic acid bacteria appeared to contribute to antibiosis of Kimchi by the concerted action of these three different types of antibacterial compounds. As one of model system for type B bacteriocin, the antagonistic compound produced by LAB31-9 as well as th producer strain itself was further charaacterized. Strain LAB31-9 was identified as L. casei. Bacteriocin produced by LAB31-9 was proteinaceous and stable over wide range of pH and to various solvents, but very labile to heat treatment. Its mode of action was bactericidal. Based upon these data, bacteriocin produced by LAB31-9 was named as 'caseicin K319'. Genetic determinant for the bacteriocin production of LAB31-9 was located in the chromosome.

  • PDF

가교제를 이용한 Sulfanilamide 중합체의 합성과 항균특성 (Characterization of Antibacterial activity and Synthesis of Sulfanilamide Polymer using Crosslinking Agent)

  • 김종완;윤철훈;황성규;공승대;이한섭
    • 한국응용과학기술학회지
    • /
    • 제17권1호
    • /
    • pp.37-42
    • /
    • 2000
  • Drug delivery system(DDS) have been actively studied for the past twenty years. Dual action agents are unique chemical entities comprised of two different types of antibacterial compounds covalently linked together in a single molecule in such a way that both components are able to exert their bactericidal properties. In spite of the advent of the antibacterial agent the sulfa agents are the most widely used antibacterial agent today. In this study, new antibacterials derivative was synthesized using glutaraldehyde such as crosslinking agent for the purpose of dual-action as DDS study. Antibacterial activity of these new synthetic derivative between their structures and activities were examined by disc diffusion method. As a result, new synthetic derivative exhibited the broad antibacterial activities against Gram(+) and Gram(-) bacilli. Especially, the antibacterial effect of new synthetic derivative against Gram negative(Esherichia. coli) was much stronger than that against Gram positive.

Sclerotiorin: a Novel Azaphilone with Demonstrated Membrane Targeting and DNA Binding Activity against Methicillin-Resistant Staphylococcus aureus

  • Dasagrandhi, Chakradhar;Pandith, Anup;Imran, Khalid
    • 한국미생물·생명공학회지
    • /
    • 제48권4호
    • /
    • pp.429-438
    • /
    • 2020
  • The emergence of multi-drug resistant, pathogenic methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health and has created a need for novel functional therapeutic agents. In this study, we evaluated the underlying mechanisms of the anti-MRSA effect of an azaphilone pigment, sclerotiorin (SCL) from Penicillium sclerotiorum. The antimicrobial activity of SCL was evaluated using agar disc diffusion, broth microdilution, time-kill assays and biophysical studies. SCL exhibits selective activity against Gram positive bacteria including MRSA (range, MIC = 128-1028 ㎍/ml) and exhibited rapid bactericidal action against MRSA with a > 4 log reduction in colony forming units within three hours of administration. Biophysical studies, using fluorescent probes and laser or electron microscopy, demonstrated a SCL dose-dependent alternation in membrane potential (62.6 ± 5.0.4% inhibition) and integrity (> 95 ± 2.3%), and the release of UV260 absorbing materials within 60 min (up to 3.2 fold increase, p < 0.01) of exposure. Further, SCL localized to the cytoplasm and hydrolyzed plasmid DNA. While in vitro checkerboard studies revealed that SCL potentiated the antimicrobial activity of topical antimicrobials such as polymixin, neomycin, and bacitracin (Fractional Inhibitory Concentration Index range, 0.26-0.37). Taken together these results suggest that SCL targets the membrane and DNA of MRSA to facilitate its anti-MRSA antimicrobial effect.

Fluoroquinolone계 항생제인 DWQ-217의 in vitro와 in vitro 항균작용 (Evaluation of in Vitro and in Vivo Antibacterial Activity of DWQ-217, a Fluoroquinolone)

  • 김병오;최문정;한승희;김지연;심점순;박남준;손호정;이재욱;유영효
    • 약학회지
    • /
    • 제39권4호
    • /
    • pp.351-359
    • /
    • 1995
  • The in vitro and in vivo antibacterial activities of DWQ-217 (1-cyclopropyl-6-fluoro-8-chloro-7-(3-amino-4-methylthiomethylpyrrolidinyl )-1,4-dihydro-4-oxo-quinoline-3-carboxylic acid) were compared with those of ciprofloxacin (CPFX) and vancomycin(VCM). DWQ-217 was superior to those of CPFX and VCM against gram positive bacteria. DWQ-217 showed excellent activity against MRSA (MIC of methicillin; $\geq$12.5 $\mu\textrm{g}$/ml), MIC$_{90}$=0.013. DWQ-217 possessed strong bactericidal action against gram positive and gram negative strains by MIC/MBC test and killing curve. DWQ-217 and CPFX were administered orally and subcutaneously to mice infected systematically with S. aureus and S. pyogenes, DWQ-217 was $\geq$5-16 fold(p.o.) and $\geq$3-5 fold(s.c.) more active than CPFX.

  • PDF