• Title/Summary/Keyword: Bacterial vector

Search Result 169, Processing Time 0.023 seconds

Cloning and Prokaryotic Expression of C-type Lysozyme Gene from Agrius convolvuli

  • Kim, Jong-Wan;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2008
  • We have isolated and characterized Agrius convolvuli cDNA encoding a c-type lysozyme. The cDNA sequence encodes a processed protein of 139 amino acid residues with 19 amino acid residues amino-terminal signal sequence and 120 amino acid residues mature sequence. The amino acid residues responsible for the catalytic activity and the binding of the substrate are conserved. Agrius lysozyme has a high identity to Manduca sexta. Recombinant A. convolvuli lysozyme was expressed in Escherichia coli BL21(DE3) pLysS cells for pGEX 4T-1 expression vector. Their optimal conditions for the fusion protein expression and purification were screened. Lysozyme gene amplified with primers ACLyz BamHI and ACLyz XhoI was ligated into the pGEX 4T-1 vector, which contained the glutathione S-transferase(GST) gene for fusion partner. The fusion protein was induced by IPTG and identified by SDS-PAGE analysis. Molecular weight of the fusion protein was estimated to be about 45 kDa. Recombinant lysozyme, fused to GST, was purified by glutathion-Sepharose 4B affinity chromatography. Western blot analysis of this protein revealed an immunoreactivity with the anti-Agrius lysozyme.

Site-Specific Recombination by the Integrase MJ1 on Mammalian Cell (동물 세포 내에서 MJ1 인티그라제에 의한 부위 특이적 재조합)

  • Kim, Hye-Young;Yoon, Bo-Hyun;Chang, Hyo-Ihl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.337-344
    • /
    • 2011
  • Integrase MJ1 from the bacteriophage ${\Phi}FC1$ carries out recombination between two DNA sequences (the phage attachment site, attP and the bacterial attachment site, attB) in NIH3T3 mouse cells. In this study, the integration vector containing attP, attB and the integrase gene MJ, was constructed. The integration mediated by integrase MJ1 in Escherichia coli led to excision of LacZ. Therefore, the frequency of integration was measured by the counting of the white colony, which is detectable on X-Gal plates. The extrachromosomal integration in NIH3T3 mouse cells was monitored by the expression of the green fluorescent protein (GFP) as a reporter. To demonstrate integration mediated integrase MJ1 in NIH3T3 cells, vectors containing attP and attB were co-transfected into NIH3T3 cells. The integration was confirmed by fluorescent microscopy. The expression of GFP was induced in NIH3T3 cells expressing MJ1 without accessory factors. By contrast, the excision mediated by the MJ1 between attR and attL had no effect on the expression of GFP. These results suggest that integrase MJ1 may enable a variety of genomic modifications for research and therapeutic purposes in higher living cells.

Expression and Activity of Citrus Phytoene Synthase and $\beta$-Carotene Hydroxylase in Escherichia coli

  • Kim, In-Jung;Ko, Kyong-Cheol;Nam, Tae-Sik;Kim, Yu-Wang;Chung, Won-Il;Kim, Chan-Shick
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.212-218
    • /
    • 2003
  • Citrus phytoene synthase (CitPsy) and ${\beta}$-carotene hydroxylase (CitChx), which are involved in caroteinoid biosynthesis, are distantly related to the corresponding bacterial enzymes from the point of view of amino acid sequence similarity. We investigated these enzyme activities using Pantoea ananatis carotenoid biosynthetic genes and Escherichia coli as a host cell. The genes were cloned into two vector systems controlled by the T7 promoter. SDS-polyacrylamide gel electrophoresis showed that CitPsy and CitChx proteins are normally expressed in E. coli in both soluble and insoluble forms. In vivo complementation using the Pantoea ananatis enzymes and HPLC analysis showed that ${\beta}$-carotene and zeaxanthin were produced in recombinant E. coli, which indicated that the citrus enzymes were functionally expressed in E. coli and assembled into a functional multi-enzyme complex with Pantoea ananatis enzymes. These observed activities well matched the results of other researchers on tomato phytoene synthase and Arabidopsis and pepper ${\beta}$-carotene hydroxylases. Thus, our results suggest that plant carotenoid biosynthetic enzymes can generally complement the bacterial enzymes and could be a means of carotenoid production by molecular breeding and fermentation in bacterial and plant systems.

Transiently Experessed Salt-Stress Protection of Rice by Transfer of a Bacterial Gene, mtlD

  • Lee, Eun-A;Kim, Jung-Dae;Cha, Yoo-Kyung;Woo, Dong-Ho;Han, In-Seob
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.415-418
    • /
    • 2000
  • Productivity of a rice plant is greatly influenced by salt stress. One of the ways to achieve tolerance to salinity is to transfer genes encoding protective enzymes from other organisms, such as microorganisms. The bacterial gene, mtlD, which encodes mannitol-1-phosphate dehydrogenase (Mtl-DH), was introduced to the cytosol of a rice plant by an imbibition technique to overproduce mannitol. The germination and survival rate of the imbibed rice seeds were markedly increased by transferring the mtlD gene when it was delivered in either a pBIN19 or pBmin binary vector. When a polymerase chain reaction was performed with the genomic DNAs of the imbibed rice leaves as a template and with mtlD-specific primers, several lines were shown to contain an exogenous mtlD DNA. However, a reverse transcription (RT)-PCR analysis revealed that not all of them showed an expression of this foreign gene. This paper demonstrates that the growth and germination of rice plants transiently transformed with the bacterial gene, mtlD, are enhanced and these enhancements may have resulted from the experssion of the mtlD gene. The imbibition method empolyed in this study fulfills the requirements for testing the function of such a putative gene in vivo prior to the production of a stable transgenic plant.

  • PDF

Interaction of Escherichia coli K1 and K5 with Acanthamoeba casfellanii Trophozoites and Cysts

  • Matin, Abdul;Jung, Suk-Yul
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.4
    • /
    • pp.349-356
    • /
    • 2011
  • The existence of symbiotic relationships between Acanthamoeba and a variety of bacteria is well-documented. However, the ability of Acanthamoeba interacting with host bacterial pathogens has gained particular attention. Here, to understand the interactions of Escherichia coli K1 and E. coli K5 strains with Acanthamoeba castellanii trophozoites and cysts, association assay, invasion assay, survival assay, and the measurement of bacterial numbers from cysts were performed, and nonpathogenic E. coli K12 was also applied. The association ratio of E. coli K1 with A. castellanii was 4.3 cfu per amoeba for 1 hr but E. coli K5 with A. castellanii was 1 cfu per amoeba for 1 hr. By invasion and survival assays, E. coli K5 was recovered less than E. coli K1 but still alive inside A. castellanii. E. coli K1 and K5 survived and multiplied intracellularly in A. castellanii. The survival assay was performed under a favourable condition for 22 hr and 43 hr with the encystment of A. castellanii. Under the favourable condition for the transformation of trophozoites into cysts, E. coli K5 multiplied significantly. Moreover, the pathogenic potential of E. coli K1 from A. castellanii cysts exhibited no changes as compared with E. coli K1 from A. castellanii trophozoites. E. coli K5 was multiplied in A. castellanii trophozoites and survived in A. castellanii cysts. Therefore, this study suggests that E. coli K5 can use A. castellanii as a reservoir host or a vector for the bacterial transmission.

Host Vector Systems of Deep-sea Piezophilic Bacteria, and the Constructions of High Pressure Glow Cells

  • Sato, Takako;Kato, Chiaki
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.83-85
    • /
    • 2007
  • Deep-sea bacteria are adapted to extreme environments, such as high pressures and cold temperatures. We have isolated many piezophiles which grow well even under high pressures from deep-sea sediment. Shewanella violacea DSS12 and Moritella japonica DSK1 have the ability to grow at up to 70 MPa, and those bacteria have unique mechanisms of gene expression in response to high pressure conditions. The combination of gene expression systems in piezophiles, like the high pressure-dependent promoters and GFP reporter gene, may reveal highly fluorescent cells when exposed to high hydrostatic pressure conditions. It is predicted that a novel bio-sensing system can be made to probe high pressure environments using living bacteria. First, gene transformation into our piezophiles, strains DSS12 and DSK1, were examined. Eschericha coli S17-1 was used for bacterial conjugation with those piezophiles. As a result, the broad host range vector, pKT231, and the shuttle vector, pTH10, were successfully introduced to DSS12 and DSK1, respectively. Next, The pressure regulated promoters from DSS12 and DSK1 were cloned into proper vectors and combined with GFP as a reporter gene downstream of each promoter. The transformants of DSK1 and DSS12 with the recombinant pTH10 and pKT231 plasmid, which has cadA and glnA promoters (each of them is a pressure regulated promoter from DSK1 and DSS12, respectively) and GFP, were grown under high pressure and gene expression of GFP promoted by 50 MPa pressure was confirmed. This is a critical point to create a pressure-sensing bacteria, as the "High Pressure Glow Cells", which will indicate the level of environmental pressure using fluorescence of GFP as a reporter gene.

  • PDF

Platform Technology for Food-Grade Expression System Using the genus Bifidobacterium

  • Park, Myeong-Soo;Kang, Yoon-Hee;Cho, Sang-Hee;Seo, Jeong-Min;Ji, Geun-Eog
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.155-157
    • /
    • 2001
  • Bifidobacterium spp. is nonpathogenic, gram-positive and anaerobic bacteria, which inhabit the intestinal tract of humans and animals. In breast-fed infants, bifidobacteria comprise morethan 90% of the gut bacterial population. Bifidobacteria spp. are used in commericial fermented dairy products and have been suggested to exert health promoting effects on the host by maintaining intestinal microflora balances, improving lactose tolerance, reducing serum cholesterol levels, increasing synthesis of vitamins, and aiding the immune enchancement and anticarcinogenic activity for the host. These beneficial effects of Bifidobacterium are strain-related. Therefore continued efforts to improve strain characteristics are warranted. in these respect, development of vector system for Bifidobacterium is very important not only for the strain improvement but also because Bifidobacterium is most promising in serving as a delivery system for the useful gene products, such as vaccine or anticarcinogenic polypeptides, into human intestinal tract. For developing vector system, we have characterized several bifidobacterial plasmids at genetic level and developed several shuttle vectors between E. coli and Bifidobacterium using them. Also, we have cloned and sequenced several metabolic genes and food grade selection marker. Also we have obtained bifidobacterial surface protein, which will be used as the mediator for surface display of foreign genes. Recently we have succeeded in expressing amylase and GFP in Bifidobacterium using our own expression vector system. Now we are in a very exciting stage for the molecular breeding and safe delivery system using probiotic Bifidobacterium strains.

  • PDF

Cloning and Characterization of the Genes Responsible for Degradation of 4-Chlorobenzoic Acid (4-Chlorobenzoic Acid 분해유전자의 클로닝과 유전학적 특성)

  • 이익근;김종우;김치경
    • Korean Journal of Microbiology
    • /
    • v.28 no.1
    • /
    • pp.41-46
    • /
    • 1990
  • A bacterial isolate of DJ-12 capable of degrading 4-chlorobenzoic acid (4CBA) as well as 4-chlorobiphenyl (4CB) was used in this study. Its biodegradability of 4CBA was tested and the location of the genes coding for degradation of 4CBA was investigated by the nethod of in vivo cloning. The genes were found to be existed in the plasmid of pDJ121 which is about 65kb in size and which has 9, 11, 10, and 19 restriction sites for EcoRI, HindIII, SalI, and PstI, respectively. The hybrid plasmid of pDK450 was constructed by ligation of the EcoRI fragments of pDJ121 with pKT230 as a vector. In the recombinant cells selected through transformation of the hybrid vector into Pseudomonas putida KT2440, the 4CBA-degrading genes of DJ-12 were proved to be cloned and expressed in the Pseudomonas sp.

  • PDF

Characterization and Functional Study of PyrR Orthologues from Genome Sequences of Bacteria (세균 게놈 유래성 PyrR Orthologue의 기능 분석)

  • 김사열;조현수;설경조;박승환
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.103-110
    • /
    • 2003
  • The regulation of pyrimidine nucleotide synthesis has been proved to be controlled by a regulatory protein PyrR-mediated attenuation in the Gram-positive bacteria. After several bacterial genome sequencing projects, we have discovered the PyrR orthologues in the databases for Haemophilus influenzae and Synechocystis and sp. PCC6803 genome sequences. To investigate whether these PyrR orthologue proteins regulate pyrimidine nucleotide synthesis as well as the cases of Bacillus, the PyrR regions of each strains were amplified by PCR and cloned with pUC19 or T-vector in Escherichia coli and with a shuttle vector pHPS9 for E. coli and B. subtilis. For the regulation test of the PyrR orthologues, the aspartate-transcarbamylase (ATCase) assay was carried out. From the results of the ATCase assay, it was confirmed that Synechocystis sp. PCC6803 could not restore by pyrimidines to a B. subtilis, PyrR but H. influenzae PyrR could. For Purification of PyrR orthologue proteins, PyrR orthologue genes were cloned into the expression vector (pET14b). Over-expressed product of PyrR orthologue genes was purified and analyzed by the SDS-PACE. The purified PyrR orthologue proteins from H. influenzae and Synechocystis sp. PCC6803 turned out to be molecular mass of 18 kDa and 21 kDa, respectively. The result of uracil phosphoribosyl transferase (UPRTase) assay with purified PyrR orthologue proteins showed that H. influenzae PyrR protein only has UPRTase activity. In addition, we could predict several regulatory mechanisms that PyrR orthologue proteins regulate pyrimidine de novo synthesis in bacteria, through phylogenetic analysis for PyrR orthologue protein sequences.

Identification of Secretion Signals of Target Proteins in Salmonella enterica serovar Typhimurium and Construction of Secretion Vector using this Signal (Salmonella enterica serovar Typhimurium에서 Type III 분비장치의 표적단백질들의 분비신호 확인 및 Type III 분비장치를 이용한 Secretion Vector의 개발)

  • Choi, Hyuk-Jin;Eom, Joon-Ho;Cho, Jung-Ah;Lee, Sun;Lee, Kyoung-Mi;Lee, In-Soo;Park, Yong-Keun
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.254-258
    • /
    • 2000
  • Invasion process of bacterial cell into intestinal epithelium is important in Salmonella infection. The invasion is induced by the proteins secreted by type III secretion appratus of Salmonella. It has been known that the proteins do not have N-terminal signal peptide existing in general secreted proteins. Recent studies on Yersinia reported that secretion signal of type III appratus may lie on 5'end secondary structure of mRNA of secreted protein. In this study, we constructed translational fusion of ompR and sopE, encoding type III secretion protein of Salmonella, and observed secretion of the fusion protein for investigating the secretion signal of Salmonella type III appratus. The sopE DNA fragments of the translational fusion contain the region of promoter and from start code to tenth or to fifth code. These translational fusions indicate that type III secretion signal of Salmonella is located on 5'end of mRNA encoding secreted protein. We constructed prototype of secretion vector using this signal to produce useful foreign protein.

  • PDF