• Title/Summary/Keyword: Bacterial vector

Search Result 169, Processing Time 0.024 seconds

C-terminal Fusion of EGFP to Pneumolysin from Streptococcus pneumoniae modified its Hemolytic Activity (Streptococcus pneumoniae가 생산하는 pneumolysin의 EGFP 융합으로 인한 용혈활성 변화)

  • Chung, Kyung Tae;Lee, Jae Heon;Jo, Hye Ju
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.99-104
    • /
    • 2018
  • Streptococcus pneumoniae is one of the major pathogens in community-acquired diseases, and it contains several factors that promote its pathogenesis, including pneumolysin (PLY). PLY is a member of the cholesterol-dependent cytolysin family, which attacks cholesterol-containing membranes, thereby forming ring-shaped pores. Thus, it is a major key target for vaccines against pneumococcal disease. We cloned the PLY gene from S. pneumoniae D39 and inserted it into the pQE-30 vector. Recombinant PLY (rPLY) was overexpressed in Escherichia coli M15 and purified by $Ni^{2+}$ affinity chromatography. Similarly, a PLY-EGFP fusion gene was produced by inserting the EGFP gene at the 3' end of the PLY gene in the same vector, and the recombinant protein was purified. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) showed that both recombinant proteins were purified. rPLY exhibited significant hemolytic activity against 1% human red blood cells (RBCs). Complete hemolysis was obtained at 500 ng/ml, and 50% hemolysis was found with a 240 ng/ml concentration. In contrast, rPLY-EGFP did not show hemolytic activity. However, rPLY-EGFP did bind the RBC membrane, indicating that rPLY-EGFP lost hemolytic activity via EGFP fusion, while retaining its membrane-binding ability. These data suggest that PLY's C terminus is important for its hemolytic activity. Therefore, these two recombinant proteins can be extremely useful for investigating the toxin mechanism of PLY and cell damage during pneumonia.

Cloning of a Chitinase Gene of Xanthomonas sp. Isolated from Soil and its Expression in E. coli. (토양에서 분리된 Xanthomonas sp.의 Chitinase 유전자 cloning과 E.coli에서의 발현)

  • Kim, Ho-Sang;Seong, Ki-Young;Eun, Moo-Young;Hwang, Cher-Won
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.125-129
    • /
    • 1998
  • Xanthomonas sp. isolated from soil exhibited cell wall lytic activity of Candida albicans and secreted chitinase in chitin media. Especially, the chitinase activity was induced by chitin and reached a maximum level at 3 days culture in chitin media. We constructed genomic library of Xanthomonas sp. using cosmid vector in E. coli. Oligonucleotide probe was synthesized from the consensus sequence corresponding to chitinase active site, which was derived from the comparison of amino acid sequences of bacterial chitinase genes. Using this oligonucleotide probe, we screened the genomic library. By restriction enzyme mapping of the positive clones, we identified 4 independent clones which may contain the chitinase gene. One of the clones, named pXCH1 (1.2 kb insert), was further analyzed. Northern blot analysis indicated that is transcripts, 1 kb and 0.8 kb, were induced by chitin. When the cloned gene was induced by IPTG in E.coli cell, chitinase activity which was secreted onto culture media was not observed. However, when the cell was disrupted by using sonicator and then centrifuged, the supernatant exhibited chitinase activity. SDS-PAGE of the supernatant indicated that about 35 kDa protein was induced by IPTG. From these results, it was concluded that the cloned DNA was one of the chitinase genes of Xanthomonas sp.

  • PDF

High-Level Expression of T4 Endonuclease V in Insect Cells as Biologically Active Form

  • Kang, Chang-Soo;Son, Seung-Yeol;Bang, In-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1583-1590
    • /
    • 2006
  • T4 endonuclease V (T4 endo V) [EC 3. 1. 25. 1], found in bacteriophage T4, is responsible for excision repair of damaged DNA. The enzyme possesses two activities: a cyclobutane pyrimidine dimer DNA glycosylase (CPD glycosylase) and an apyrimidic/apurinic endonuclease (AP lyase). T4 denV (414 bp cDNA) encoding T4 en do V (138 amino acid) was synthesized and expressed using either an expression vector, pTriEx-4, in E. coli or a baculovirus AcNPV vector, pBacPAK8, in insect cells. The recombinant His-Tag/T4 endo V (rHis-Tag/T4 endo V) protein expressed from bacteria was purified using one-step affinity chromatography with a HiTrap Chelating HP column and used to make rabbit anti-His-Tag/T4 endo V polyclonal antibody for detection of recombinant T4 endo V (rT4 endo V) expressed in insect cells. In the meantime, the recombinant baculovirus was obtained by cotransfection of BacPAK6 viral DNA and pBP/T4 endo V in Spodoptera frugiperda (Sf21) insect cells, and used to infect Sf21 cells to overexpress T4 endo V protein. The level of rT4 endo V protein expressed in Sf21 cells was optimized by varying the virus titers and time course of infection. The optimal expression condition was set as follows; infection of the cells at a MOI of 10 and harvest at 96 h post-infection. Under these conditions, we estimated the amount of rT4 endo V produced in the baculovirus expression vector system to be 125 mg/l. The rT4 endo V was purified to homogeneity by a rapid procedure, consisting of ion-exchange, affinity, and reversed phase chromatographies, based on FPLC. The rT4 endo V positively reacted to an antiserum made against rHis-Tag/T4 endo V and showed a residual nicking activity against CPD-containing DNA caused by UV. This is the first report to have T4 endo V expressed in an insect system to exclude the toxic effect of a bacterial expression system, retaining enzymatic activity.

Overproduction of Bacterial Trypsin in Streptomyces - Optimization for Streptomyces griseus Trypsin Production by Recombinant Streptomyces (미생물을 이용한 트립신 과대 생산 연구 - Streptomyces용 숙주-벡터계를 이용한 트립신 유전자의 대량발현 최적화 -)

  • Kim, Jong-Hee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • The expression vector (pWHM3-TR1R2) for sprT gene encoding Streptomyces griseus trypsin (SGT) followed by two regulatory genes, sgtR1 and sgtR2, was introduced into Streptomyces lividans TK24 and Streptomyces griseus IFO 13350. Various media with different compositions were used to maximize the productivity of SGT in the recombinant trains. he SGT productivity was best when the transformant of S. lividans TK24 was cultivated in R2YE medium (0.74 unit/mL) at 5 days of cultivation. C5/L (0.66 unit/mL) medium also gave a good productivity, but Livid (0.08 unit/mL) and NDSK (0.06 unit/mL) yielded poor productivities. S. griseus IFO 13350/pWHM3-TR1R2 produced SGT by 1.518 unit/mL (C5/L), 1.284unit/mL (R2YE),0.932 unit/mL (NDSK), and 0.295 unit/mL (Livid) at 7 days of cultivation, which was much higher than those from S. lividans TK24/TR1R2. The SGT protein was purified from the culture broth of S. griseus IFO 13350/pWHM3-TR1R2 in C5/L to homogeneity via ammonium sulfate fractionation, and CM-sepharose and SP-sepharose column chromatographies. The specific activity of purified SGT was 69,252 unit/mg, and the final purification fold and recovery yield were 6.5 and 1.4%, respectively.

Substantial Protective Immunity Conferred by a Combination of Brucella abortus Recombinant Proteins against Brucella abortus 544 Infection in BALB/c Mice

  • Arayan, Lauren Togonon;Huy, Tran Xuan Ngoc;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Son, Vu Hai;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.330-338
    • /
    • 2019
  • Chronic infection with intracellular Brucella abortus (B. abortus) in livestock remains as a major problem worldwide. Thus, the search for an ideal vaccine is still ongoing. In this study, we evaluated the protective efficacy of a combination of B. abortus recombinant proteins; superoxide dismutase (rSodC), riboflavin synthase subunit beta (rRibH), nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12) and malate dehydrogenase (rMDH), cloned and expressed into a pMal vector system and $DH5{\alpha}$, respectively, and further purified and applied intraperitoneally into BALB/c mice. After first immunization and two boosters, mice were infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544. Spleens were harvested and bacterial loads were evaluated at two weeks post-infection. Results revealed that this combination showed significant reduction in bacterial colonization in the spleen with a log protection unit of 1.31, which is comparable to the average protection conferred by the widely used live attenuated vaccine RB51. Cytokine analysis exhibited enhancement of cell-mediated immune response as IFN-${\gamma}$ is significantly elevated while IL-10, which is considered beneficial to the pathogen's survival, was reduced compared to control group. Furthermore, both titers of IgG1 and IgG2a were significantly elevated at three and four-week time points from first immunization. In summary, our in vivo data revealed that vaccination with a combination of five different proteins conferred a heightened host response to Brucella infection through cell-mediated immunity which is desirable in the control of intracellular pathogens. Thus, this combination might be considered for further improvement as a potential candidate vaccine against Brucella infection.

Multi-Immunogenic Outer Membrane Vesicles Derived from a MsbB-Deficient Salmonella enterica Serovar Typhimurium Mutant

  • Lee, Sang-Rae;Kim, Sang-Hyun;Jeong, Kang-Jin;Kim, Keun-Su;Kim, Young-Hyun;Kim, Sung-Jin;Kim, E-Kyune;Kim, Jung-Woo;Chang, Kyu-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1271-1279
    • /
    • 2009
  • To develop low endotoxic and multi-immunogenic outer membrane vesicles (OMVs), a deletion mutant of the msbB gene in Salmonella enterica serovar Typhimurium (S. Typhimurium) was used as a source of low endotoxic OMV, and an expression vector of the canine parvovirus (CPV) VP2 epitope fused to the bacterial OmpA protein was constructed and transformed into the Salmonella ${\Delta}msbB$ mutant. In a lethality test, BALB/c mice injected intraperitoneally with the Salmonella ${\Delta}msbB$ mutant survived for 7 days, whereas mice injected intraperitoneally with the wild type survived for 3 days. Moreover, all mice inoculated orally with the ${\Delta}msbB$ mutant survived for 30 days, but 80% of mice inoculated orally with the wild type survived. The OmpA::CPV VP2 epitope fusion protein was expressed successfully and associated with the outer membrane and OMV fractions from the mutant S. Typhimurium transformed with the fusion protein-expressing vector. In immunogenicity tests, sera obtained from the mice immunized with either the Salmonella msbB mutant or its OMVs containing the OmpA::CPV VP2 epitope showed bactericidal activities against wild-type S. Typhimurium and contained specific antibodies to the CPV VP2 epitope. In the hemagglutination inhibition (HI) assay as a measurement of CPV-neutralizing activity in the immune sera, there was an 8-fold increase of HI titer in the OMV-immunized group compared with the control. These results suggested that the CPV-neutralizing antibody response was raised by immunization with OMV containing the OmpA::CPV VP2 epitope, as well as the protective immune response against S. Typhimurium in BALB/c mice.

Follow-up of Exogenous DNA by Sperm-mediated Gene Transfer via Liposome

  • Cho, Hwang-Yun;Chung, Ki-Hwa;Kim, Jin-Hoi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1412-1421
    • /
    • 2002
  • To examine the feasibility of using a sperm vector system for gene transfer, we have investigated the binding and the uptaking of foreign DNA into the sperm nucleus by PCR, in situ hybridization and LSC. We have also examined the transportation of exogenous DNA into oocytes by immunofluorescene via PCR. Sperm cells were incubated with DNA/liposome complexes (1:4 ratio) in fertilization medium with BSA or without BSA. In situ hybridization demonstrated that the transfection rate of sperm cells with and without BSA was 41 and 68% respectively, when the cells were treated with liposome/DNA complexes and 13% for DNA alone. LSC analysis showed that the binding of exogenous DNA was greatly reduced by DNase I treatment which digests DNA bound onto spermatozoa, suggesting that some of the DNA was internalized into the sperm membrane. To find out whether transfected DNA was internalized into sperm intracytomembrane, sperm DNA was amplified by inverse PCR. No PCR products were detected from sperm cells, indicating that the foreign DNA was simply bound onto the sperm membrane. To investigate transfer rates of exogenous DNA into oocytes via sperm cells, we used immunofluorescene method to follow the distribution of foreign DNA via spermatozoa: a few exogenous DNA was located in the cytoplasm of early embryos (13/60, 21.7% for DNA+/liposome+/BSA) and was not located in the pronucleus and/or nucleus. These results suggest that most of the transfected sperm cells could carry the foreign DNA into the egg by in vitro fertilization, but that the transferred DNA is degraded in the developing embryos without stable integration into the zygote genome. Therefore, we have directly injected with transfected sperm cell into oocyte cytoplasm and observed that some of the exogenous DNA was detected in preimplantation embryonic cytoplasm and expressed at preimplantation stages, suggesting that exogenous DNA in early zygote has their integrity. In this study, we have not identified a noble mechanism that interfering transportation of foreign DNA into zygote genome via spermatozoa. Our data, however, demonstrated that inverse PCR and immunofluorescene methods would be used as a new tool for follow-up of gene distribution in oocyte via sperm cells.

Systematic approaches to identify functional genes using the FOX-hunting system in Chinese cabbage (FOX hunting system을 이용한 배추 기능유전자 탐색)

  • Lee, In-Hoo;Jung, Yu-Jin;Park, Jong-In;Nou, Ill-Sup;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.174-185
    • /
    • 2010
  • Full-length cDNAs are essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. To elucidate the functions of a large population of Chinese cabbage (Brassica rapa) genes and to search efficiently for agriculturally useful genes, we have been taking advantage of the full-length cDNA Over-eXpresser (FOX) gene hunting system. With oligo dT column it purify the each mRNA from the flower organs, leaf and stem tissue. And about 120,000 cDNAs from the library were transformed into $\lambda$-pFLCIII-F vector. Of which 115,000 cDNAs from the library were transformed into T-DNA binary vector, pBigs for transformation study. We used normalized full-length cDNA and introduced each cDNA into Arabidopsis by in planta transformation. Full-length Chinese cabbage cDNAs were expressed independently under the CaMV 35S promoter in Arabidopsis. Selfed seeds were harvested from transgenic Arabidopsis. We had selected 2,500 transgenic plants by hygromycin antibiotic tolerant test, and obtained a number of transgenic mutants. Each transgenic Arabidopsis was investigated in morphological changes, fertility and leaf colour. As a result, 285 possible morphological mutants were identified. Introduced cDNA was isolated by PCR amplification of the genomic DNA from the transgenic mutants. Sequencing result and BLAST analysis showed that most of the introduced cDNA were complete cDNAs and functional genes. Also, we examined the effect of Bromelain on enhancing resistance to soft rot in transgenic Chinese cabbage 'Osome'. The bromelain gene identified from FOX hunting system was transformed into Chinese cabbage using Agrobacterium methods. Transformants were screened by PCR, then RT-PCR and real time PCR were performed to analyze gene expression of cysteine protease in the T1 and T2 generations. The anti-bacterial activity of bromelain was tested in Chinese cabbages infected with soft rot bacteria. The results showed that the over-expressed bromelain gene from pineapple conferred enhanced resistance to soft rot in Chinese cabbage.

BACTERIAL IDENTIFICATION WITH RANDOM-CLONED RESTRICTION FRAGMENT OF Porphyromonas endodontalis ATCC 35406 GENOMIC DNA (무작위로 클로닝한 Porphyromonas endodontalis ATCC 35406 지놈 DNA의 제한절편 hybridization법에 의한 세균동정)

  • Um, Won-Seok;Han, Yoon-Soo
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.645-654
    • /
    • 1995
  • Porphyromonas endodontalis is a black-pigmented anaerobic Gram negative rod which is associated with endodontal infections. It has been isolated from infected dental root canals and submucous abscesses of endodontal origin. DNA probe is an available alternative, offering the direct detection of a specific microorganism. Nucleic-acid probes can be off different types: whole different: whole-genomic, cloned or oligonucleotide probes. Wholegenomic probes are the most sensitive because the entire genome is used for possible hybridization sites. However, as genetically similar species of bacteria are likely to be present in specimences, cross-reactions need to be considered. Cloned probes are isolated sequences of DNA that do not show cross-reactivity and are produced in quantity by cloning in a plasmid vector. Cloned probes can approach the sensitivity found with whole-genomic probes while avoiding known cross-reacting species. Porphyromonas endodontalis ATCC 35406 (serotype $O_1K_1$) was selected in this experiment to develop specific cloned DNA probes. EcoR I-digested genomic DNA fragments of P. endodontalis ATCC 35406 were cloned into pUC18 plasmid vector. From the E. coli transformed with the recombinant plasmid 4 clones were selected to be tested as specific DNA probes. Restriction-digested whole-genomic DNAs prepared from P. gingivalis 38(serotype a), W50(serotype b), A7A1-28(serotype C), P. intermedia 9336(serotype b), G8-9K-3(serotype C), P. endodontalis ATCC 35406(serotype $O_1K_1$), A. a Y4(serotype b), 75(serotype a), 67(serotype c), were each seperated on agarose gel electrophoresis, blotted on nylon membranes, and were hybridized with digoxigenin-dUTP labeled probe. The results were as follows: 1. Three clones of 1.6kb(probe e), 1.6kb(probe f), and 0.9kb(probe h) in size, were obtained. These clones were identified to be a part of the genomic DNA of P. endodontalis ATCC 35406 judging from their specific hybridization to the genomic DNA fragments of their own size on Southern blot. 2. The clones of 4.9kb(probe i) was identified to be a part of the genomic DNA of P. endodontalis ATCC 35406. but not to specific for itself. It was hybridized to P. gingivalis A7A1-28, P. intermedia G89K-3.

  • PDF

Studies on a Toxin/Antitoxin System in Streptococcus iniae (어류병원균 Streptococcus iniae의 toxin/antitoxin system에 대한 연구)

  • Yoon, Seongyong;Kim, Yeon Ha;Jeun, Moonjung;Seong, Minji;Yoo, Ah Young;Lee, Donghee;Moon, Ki Hwan;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2019
  • Streptococcus iniae is a typical fish pathogen causing streptococcosis and it can also cause zoonotic infectious diseases. We studied S. iniae FP5228 isolated from infected olive flounder in Wando, Korea. In a study to find virulence factors in FP5228, we found that the number of live bacteria decreased dramatically in culture medium containing S. iniae FP5228 for more than 24 hr. This phenomenon was hypothesized to be related to Toxin ${\zeta}$ and Antitoxin ${\varepsilon}$ genes, components of the Toxin/ Antitoxin (TA) system on the 14 kb plasmid of FP5228. We used a protein overexpression system to identify it. The pBP1140 vector system was constructed to regulate the expression of Toxin ${\zeta}$ and Antitoxin ${\varepsilon}$ by IPTG and Arabinose. E. coli/pBP1140 strain grew slowly in early growth under toxin expression condition, and it was confirmed by microscopic observation that the strain became longer. S. iniae CK287, lacking a 14 kb plasmid of S. iniae FP5228 strain, was constructed. CK287 bacterial cells did not show rapid killing during culture, and the ability to produce biofilm was also decreased, and toxicity was weakened in cytotoxicity test and fish test. These results suggest that the TA system is involved in physiological regulation and expression of virulence factors in S. iniae FP5228.