• Title/Summary/Keyword: Bacterial communities

Search Result 347, Processing Time 0.018 seconds

Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets

  • Hu, Yuanliang;Dun, Yaohao;Li, Shenao;Zhao, Shumiao;Peng, Nan;Liang, Yunxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1131-1140
    • /
    • 2014
  • This research focused on the effects of different doses of Bacillus subtilis KN-42 on the growth performance, diarrhea incidence, faecal bacterial flora, and the relative number of Lactobacillus and Escherichia coli in faeces of weaned piglets to determine whether the strain can serve as a candidate antimicrobial growth promoter. A total of 360 piglets (initial body weight $7.14{\pm}0.63$ kg) weaned at $26{\pm}2$ days of age were randomly allotted to 5 treatment groups (4 pens per treatment with 18 pigs per pen) for a 28-day trial. Dietary treatments were basal diet without any antimicrobial (negative control; NC), basal diet supplemented with 120 mg/kg feed of neomycin sulfate (positive control; PC) and basal diet supplemented with $2{\times}10^9$ (L), $4{\times}10^9$ (M) and $20{\times}10^9$ (H) CFU/kg feed of B. subtilis KN-42. During the overall period, average daily gain and feed efficiency of piglets were higher in groups PC, M, and H than those in group NC (p<0.05), and all probiotics and antibiotics groups had a lower diarrhea index than group NC (p<0.05). The 16S rDNA gene-based methods were used to analyze faecal bacterial flora on day 28 of experiment. The result of denaturing gradient gel electrophoresis analysis showed that supplementation of B. subtilis KN-42 to the diet changed the bacterial communities, with a higher bacterial diversity and band number in group M than in the other four groups. Real-time polymerase chain reaction analysis showed that the relative number of Lactobacillus were higher in groups PC and H than in group NC (p<0.05), and the supplemented B. subtilis KN-42 to the diet also reduced the relative number of E. coli (p<0.05). These results suggest that dietary addition of B. subtilis KN-42 can improve the growth performance and gastrointestinal health of piglets.

Seasonal Changes of bacterial community analysed by fluorescent in situ hybridization method in Lake Soyang (Fluorescent In Situ Hybridization방법으로 분석한 소양호 세균 군집 구조의 계절적 변화)

  • Hong, Sun-Hee;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.169-174
    • /
    • 1998
  • To define the structure and diversity of bacterial communities in the aqutic ecosystem, Lake Soyang, the largest artificial reservoir in Korea, a new method, fluorescent in situ hybridization was applied. This technique relies on the specific hybridization of the nucleic acid probes to the naturally amplified intracellular rRNA. By this method, the bacterial community composition of Lake Soyang and bacterial numbers belong to eubacteria, proteobacteria and Cytophaga-Flavobacterium group were estimated. Total bacterial numbers ranged from $0.3{\times}10^6{\sim}2.0{\times}10^6cells{\cdot}ml^{-1}$, and vertical profile of total bacteria showed the peak at 2 and 5 m depths. The ratio of eubacteria to total bacteria were 22~100% and varied with depth and season. The percentage of Proteobacteria ${\alpha}$-group ranged 2.6~66.7%, ${\beta}$-group 4.5~53.5%, ${\gamma}$-group 4.6~76.7% and Cytophaga-Flavobacterium group 2.1~35.9%. Also, bacteria] community had spatial and temporal characteristics. The dominant groups were ${\beta}$-group in winter, ${\gamma}$-group in spring and early summer and ${\alpha}$-group in summer.

  • PDF

Qualitative and Quantitative Analysis for Microbiome Data Matching between Objects (마이크로바이옴 데이터 일치를 위한 물체들 사이의 정량 및 정성적 분석)

  • You, Hee Sang;Ok, Yeon Jeong;Lee, Song Hee;Lee, So Lip;Lee, Young Ju;Lee, Min Ho;Hyun, Sung Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.202-213
    • /
    • 2020
  • Although technological advances have allowed the efficient collection of large amounts of microbiome data for microbiological studies, proper analysis tools for such big data are still lacking. Additionally, analyses of microbial communities using poor databases can lead to misleading results. Hence, this study aimed to design an appropriate method for the analysis of big microbial databases. Bacteria were collected from the fingertips and personal belongings (mobile phones and laptop keyboards) of individuals. The genomic DNA was extracted from these bacteria and subjected to next-generation sequencing by targeting the 16S rRNA gene. The accuracy of the bacterial matching percentage between the fingertips and personal belongings was verified using a formula and an environment-related and human-related database. To design appropriate analysis, the bacterial matching accuracy was calculated based on the following three categories: comparison between qualitative and quantitative analysis, comparisons within same-gender participants as well as all participants regardless of gender, and comparison between the use of a human-related bacterial database (hDB) and environment-related bacterial database (eDB). The results showed that qualitative analysis, comparisons within same-gender participants, and the use of hDB provided relatively accurate results. This study provides an analytical method to obtain accurate results when conducting studies involving big microbiological data using human-derived microorganisms.

Bacterial Community Structure and Diversity Using 16S rDNA Analysis in the Intertidal Sediment of Ganghwa Island (16S rDNA 분석을 이용한 강화도 장화리 갯벌 퇴적물 내 미생물 군집구조 및 다양성)

  • Cho Hye Youn;Lee Jung-Hyun;Hyun Jung-Ho
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.189-198
    • /
    • 2004
  • T-RFLP analysis and clone sequencing analysis based on bacterial 16S rDNA were conducted to assess bacterial community structure and diversity in two layers (0-1cm, 6-7cm depth) of the sediment from Janghwari intertidal flat in Ganghwa Island. The results of T-RFLP (terminal-restriction fragment length polymorphism) analysis using restriction enzyme HhaI showed that the T-RFs of various size ($60{\pm}2$) bp-($667{\pm}2$) bp) appeared evenly at the surface sediments but two T-RFs with 60(${\pm}2$)bp and 93 (${\pm}2$)bp predominated at 6-7cm depth. Analysis of partial sequences for 172 clones revealed that 98% of the clones were not matched with the sequences of cultured bacteria strains in the GenBank (${\geq}similarity$ 98%), and approximately 86% of them were classified as different phylotypes. Most clones belonged to $\alpha$-, $\gamma$-, and $\delta$-Proteobacteria, Acidobacteria/Holophaga and green nonsulfur bacteria group. Proteobacteria group occupied the highest proportion in both layers (69% at 0-1cm depth and 46% at 6-7cm depth). $\gamma$-Proteobacteria and $\delta$-Proteobacteria that are associated with oxidation and reduction of sulfur compounds were appeared to be dominant, and comprised 21.5% and 15.7% of total clones, respectively. Overall results indicated that extremely diverse bacterial groups were inhabiting in the sediment of Ganghwa intertidal flat, and bacterial communities associated with the behaviour of sulfur seemed to playa significant role in the biogeochemical environment in this anoxic sediment.

Influence of Elevated $CO_2$ on Denitrifying Bacterial Community in a Wetland Soil (이산화탄소 증가가 습지토양의 탈질세균 군집구조에 미치는 영향)

  • Lee Seung-Hoon;Kim Seonyoung;Kang Hojeong
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.244-247
    • /
    • 2004
  • To investigate the effects of elevated $CO_2$ on the denitrifying bacterial community structure in a wetland soil, dynamics of bacterial community structure was explored in an artificial wetland ecosystem with one of three plant species (T. latifolia, S. lacustris, and 1. effusus) under two levels of $CO_2$(370 ppm or 740 ppm) after 110day incubation. For the analysis of bacterial community structure, functional genes such as nitrite reductase genes (nirS) were PCR-amplified followed by cloning of PCR products and screening by restriction fragment length polymorphism (RFLP). nirS gene fragments were amplified in all analyzed soil samples. Species richness estimated by the number of distinct phylotypes were 83 and 95 in the ambient $CO_2$ treatment and the elevated treatment, respectively. Two phylotypes (type 1 and type 2) were dominant in both of the treatments. Elevated $CO_2$ treatment increased species richness of denitrifying as well as changed a large proportion of denitrifier phylotypes compared to those of the ambient treatment. Overall, the data in this study suggested that the denitrifying communities in the wetland soil are diverse and that the richness of denitrifying bacterial community might be affected by elevated $CO_2$ treatment.

Bacterial Diversity in the Rhizosphere of Halophyte Phragmites communis at the Western Coastal Mudflats of Korea

  • Moon, Ho-Sang;Park, Suhk-Hwan;Ka, Jong-Ok;Song, Hong-Gyu;Lee, Geon-Hyoung
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.131-137
    • /
    • 2008
  • This study investigated the population densities and diversity of heterotrophic bacteria, and the rhizosphere-to-soil ratios (R/S) in the rhizosphere soil of halophyte Phragmites communis at the western coastal mudflats of Korea. The population densities of aerobic heterotrophic bacteria on the rhizosphere soil of P. communis were in the range of $3.3\;{\pm}\;0.9\;{\times}\;10^7\;{\sim}\;1.2\;{\pm}\;0.5\;{\times}\;10^8\;cfu\;g^{-1}$ dry weight (d. wt.). Population densities of amylolytic bacteria ranged from $1.1\;{\pm}\;0.2\;{\times}\;10^6$ to $3.0\;{\pm}\;1.2\;{\times}\;10^6\;cfu\;g^{-1}\;d.\;wt.$, while those of cellulolytic bacteria and proteolytic bacteria ranged from $5.6\;{\pm}\;2.3\;{\times}\;10^6$ to $1.5\;{\pm}\;0.3\;{\times}\;10^7\;cfu\;g^{-1}\;d.\;wt.$ and from $1.4\;{\pm}\;0.3\;{\times}\;10^6$ to $3.5\;{\pm}\;2.3\;{\times}\;10^7 \;cfu\;g^{-1}\;d.\;wt.$, respectively. The R/S ratios ranged from 2.26 to 6.89. Genetic (16S DNA) analysis of fifty-one isolates from the roots of P. communis suggested that the dominant species were closely related to the ${\gamma}$-proteobacteria group (18 clones) and the ${\alpha}$-proteobacteria group (14 clones). We found that halophyte species and mudflat environment both affected the rhizosphere bacterial communities.

Effects of Long-Term Fertilization on Microbial Diversity in Upland Soils Estimated by Biolog Ecoplate and DGGE

  • An, Nan-Hee;Lee, Sang-Min;Cho, Jung-Rai;Lee, Byung-Mo;Shin, Jae-Hun;Ok, Jung-Hun;Kim, Seok-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.451-456
    • /
    • 2014
  • Organic amendment practices can influence diversity and activities of soil microorganisms. There is a need to investigate this impact compared with other types of materials. This study was carried out to evaluate the long term effects of chemical and organic fertilizer on soil microbial community in upland field. During the last 11 years green manure, rice straw compost, rapeseed cake, pig mature compost, NPK, and NPK + pig mature compost were treated in upland soil. Organic fertilizer treatment found with high bacterial colony forming units (CFUs) as compared to chemical and without fertilizer treatment. There was no significant difference in the actinomycetes and fungal population. The average well color development (AWCD) value was the highest in green manure and, the lowest in without fertilizer treatment. Analyses based on the denaturing gradient gel electrophoresis (DGGE) profile showed that rice straw compost and pig mature compost had a similar banding pattern while rapeseed cake, NPK, NPK + pig mature compost and without fertilizer treatment were clustered in another cluster and clearly distinguished from green manure treatment. Bacterial diversity can be highly increased by the application of organic fertilizer while chemical fertilizer had less impact. It can be concluded that green manure had a beneficial impact on soil microbial flora, while, the use of chemical fertilizer could affect the soil bacterial communities adversely.

Symbiotic Bacterial Flora Changes in Response to Low Temperature in Reticulitermes speratus KMT001

  • Lee, Dongmin;Kim, Yeong-Suk;Kim, Young-Kyoon;Kim, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.713-725
    • /
    • 2018
  • Lower termites require symbiotic microbes in their gut. The microbial communities in the termites must adapt to the termite temperature. Reticulitermes speratus KMT001 from Bukhan Mountain in Seoul may require a special symbiotic microorganisms for growth in low temperature Korean habitat. A metagenomics analysis showed a dramatic change in the symbiotic bacterial flora in the gut of R. speratus KMT001 in response to low temperatures of $4^{\circ}C$ or $10^{\circ}C$. Elusimicrobia, which are endosymbionts of flagellate protists, is the dominant phylum in the termite gut at ${\geq}15^{\circ}C$ but its population decreased drastically at low temperature. Four representative bacterial strains isolated from R. speratus KMT001 in a previous study produced maximum ${\beta}$-glucosidase levels within the temperature range of $10^{\circ}C-30^{\circ}C$. Elizabethkingia sp. BM10 produced ${\beta}$-glucosidase specifically at $10^{\circ}C$. This strain supported the existence of symbiotic bacteria for the low temperature habitat of the termite. This identified bacterium will be a resource for studying low temperature adaptation of termites, studying the gene expression at low temperatures, and developing an industrial cellulase at low temperature.

Effects of Quorum Quenching on the Microbial Community of Biofilm in an Anoxic/Oxic MBR for Wastewater Treatment

  • Jo, Sung Jun;Kwon, Hyeokpil;Jeong, So-Yeon;Lee, Sang Hyun;Oh, Hyun-Suk;Yi, Taewoo;Lee, Chung-Hak;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1593-1604
    • /
    • 2016
  • Recently, bacterial quorum quenching (QQ) has been proven to have potential as an innovative approach for biofouling control in membrane bioreactors (MBRs) for advanced wastewater treatment. Although information regarding the microbial community is crucial for the development of QQ strategies, little information exists on the microbial ecology in QQ-MBRs. In this study, the microbial communities of biofilm were investigated in relation to the effect of QQ on anoxic/oxic MBRs. Two laboratory-scale MBRs were operated with and without QQ-beads (QQ-bacteria entrapped in beads). The transmembrane pressure increase in the QQ-MBRs was delayed by approximately 100-110% compared with conventional- and vacant-MBRs (beads without QQ-bacteria) at 45 kPa. In terms of the microbial community, QQ gradually favored the development of a diverse and even community. QQ had an effect on both the bacterial composition and change rate of the bacterial composition. Proteobacteria and Bacteroidetes were the most dominant phyla in the biofilm, and the average relative composition of Proteobacteria was low in the QQ-MBR. Thiothrix sp. was the dominant bacterium in the biofilm. The relative composition of Thiothrix sp. was low in the QQ-MBR. These findings provide useful information that can inform the development of a new QQ strategy.

The Differences between Luminal Microbiota and Mucosal Microbiota in Mice

  • Wu, Minna;Li, Puze;Li, Jianmin;An, Yunying;Wang, Mingyong;Zhong, Genshen
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.287-295
    • /
    • 2020
  • The differences between luminal microbiota (LM) and mucosal microbiota (MAM) were little known, especially in duodenum. In this study, LM and MAM in colon and duodenum of mice were investigated through 16S rRNA high-throughput sequencing. The lowest bacterial diversity and evenness were observed in duodenal LM (D_LM), followed by duodenal MAM (D_MAM). Meanwhile, the bacterial diversity and evenness were obviously increased in D_MAM than these in D_LM, while no significant difference was observed between colonic MAM (C_MAM) and colonic LM (C_LM). PCoA analysis also showed that bacterial communities of LM and MAM in duodenum were completely separated, while these in colon overlapped partly. The ratio of Firmicutes to Bacteroidetes (F/B) in D_MAM was significantly higher than that in D_LM. Lactobacillus was largely enriched and was the characteristic bacteria in D_LM. The characteristic bacteria in D_MAM were Turicibacter, Parasutterella, Marvinbryantia and Bifidobacterium, while in C_LM they were Ruminiclostridium_6, Ruminiclostridium_9, Ruminococcaceae_UCG_007 and Lachnospiraceae_UCG_010, and in C_MAM they were Lachnospiraceae_NK4A136, Mucispirillum, Alistipes, Ruminiclostridium and Odoribacter. The networks showed that more interactions existed in colonic microbiota (24 nodes and 74 edges) than in duodenal microbiota (17 nodes and 29 edges). The 16S rDNA function prediction results indicated that bigger differences of function exist between LM and MAM in duodenum than these in colon. In conclusion, microbiota from intestinal luminal content and mucosa were different both in colon and in duodenum, and bacteria in colon interacted with each other much more closely than those in duodenum.