• Title/Summary/Keyword: Bacterial communities

Search Result 347, Processing Time 0.019 seconds

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor

  • Jang, Hyun-Jung;Choi, Young-June;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.115-123
    • /
    • 2011
  • To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.

Multi-Bioindicators to Assess Soil Microbial Activity in the Context of an Artificial Groundwater Recharge with Treated Wastewater: A Large-Scale Pilot Experiment

  • Michel, Caroline;Joulian, Catherine;Ollivier, Patrick;Nyteij, Audrey;Cote, Remi;Surdyk, Nicolas;Hellal, Jennifer;Casanova, Joel;Besnard, Katia;Rampnoux, Nicolas;Garrido, Francis
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.843-853
    • /
    • 2014
  • In the context of artificial groundwater recharge, a reactive soil column at pilot-scale (4.5 m depth and 3 m in diameter) fed by treated wastewater was designed to evaluate soil filtration ability. Here, as a part of this project, the impact of treated wastewater filtration on soil bacterial communities and the soil's biological ability for wastewater treatment as well as the relevance of the use of multi-bioindicators were studied as a function of depth and time. Biomass; bacterial 16S rRNA gene diversity fingerprints; potential nitrifying, denitrifying, and sulfate-reducing activities; and functional gene (amo, nir, nar, and dsr) detection were analyzed to highlight the real and potential microbial activity and diversity within the soil column. These bioindicators show that topsoil (0 to 20 cm depth) was the more active and the more impacted by treated wastewater filtration. Nitrification was the main activity in the pilot. No sulfate-reducing activity or dsr genes were detected during the first 6 months of wastewater application. Denitrification was also absent, but genes of denitrifying bacteria were detected, suggesting that the denitrifying process may occur rapidly if adequate chemical conditions are favored within the soil column. Results also underline that a dry period (20 days without any wastewater supply) significantly impacted soil bacterial diversity, leading to a decrease of enzyme activities and biomass. Finally, our work shows that treated wastewater filtration leads to a modification of the bacterial genetic and functional structures in topsoil.

Molecular Diversity of Bacterial Communities from Subseafloor Rock Samples in a Deep-Water Production Basin in Brazil

  • Von Der Weid, Irene;Korenblum, Elisa;Jurelevicius, Diogo;Rosado, Alexandre Soares;Dino, Rodolfo;Sebastian, Gina Vasquez;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.5-14
    • /
    • 2008
  • The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oil contamination and a very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such a deep subsurface environment.

Gut Microbiota of Tenebrio molitor and Their Response to Environmental Change

  • Jung, Jaejoon;Heo, Aram;Park, Yong Woo;Kim, Ye Ji;Koh, Hyelim;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.888-897
    • /
    • 2014
  • A bacterial community analysis of the gut of Tenebrio molitor larvae was performed using pyrosequencing of the 16S rRNA gene. A predominance of genus Spiroplasma species in phylum Tenericutes was observed in the gut samples, but there was variation found in the community composition between T. molitor individuals. The gut bacteria community structure was not significantly affected by the presence of antibiotics or by the exposure of T. molitor larvae to a highly diverse soil bacteria community. A negative relationship was identified between bacterial diversity and ampicillin concentration; however, no negative relationship was identified with the addition of kanamycin. Ampicillin treatment resulted in a reduction in the bacterial community size, estimated using the 16S rRNA gene copy number. A detailed phylogenetic analysis indicated that the Spiroplasma-associated sequences originating from the T. molitor larvae were distinct from previously identified Spiroplasma type species, implying the presence of novel Spiroplasma species. Some Spiroplasma species are known to be insect pathogens; however, the T. molitor larvae did not experience any harmful effects arising from the presence of Spiroplasma species, indicating that Spiroplasma in the gut of T. molitor larvae do not act as a pathogen to the host. A comparison with the bacterial communities found in other insects (Apis and Solenopsis) showed that the Spiroplasma species found in this study were specific to T. molitor.

Intestinal Microbial Dysbiosis in Beagles Naturally Infected with Canine Parvovirus

  • Park, Jun Seok;Guevarra, Robin B.;Kim, Bo-Ra;Lee, Jun Hyung;Lee, Sun Hee;Cho, Jae Hyoung;Kim, Hyeri;Cho, Jin Ho;Song, Minho;Lee, Ju-Hoon;Isaacson, Richard E.;Song, Kun Ho;Kim, Hyeun Bum
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1391-1400
    • /
    • 2019
  • Canine parvoviral enteritis (PVE) is an important intestinal disease of the puppies; however, the potential impact of the canine parvovirus (CPV) on the gut microbiota has not been investigated. Therefore, the aim of this study was to evaluate the gut microbial shifts in puppies naturally infected with CPV. Fecal samples were collected from healthy dogs and those diagnosed with PVE at 4, 6, 8, and 12 weeks of age. The distal gut microbiota of dogs was characterized using Illumina MiSeq sequencing of the bacterial 16S rRNA genes. The sequence data were analyzed using QIIME with an Operational Taxonomic Unit definition at a similarity cutoff of 97%. Our results showed that the CPV was associated with significant microbial dysbiosis of the intestinal microbiota. Alpha diversity and species richness and evenness in dogs with PVE decreased compared to those of healthy dogs. At the phylum level, the proportion of Proteobacteria was significantly enriched in dogs with PVE while Bacteroidetes was significantly more abundant in healthy dogs (p < 0.05). In dogs with PVE, Enterobacteriaceae was the most abundant bacterial family accounting for 36.44% of the total bacterial population compared to only 0.21% in healthy puppies. The two most abundant genera in healthy dogs were Prevotella and Lactobacillus and their abundance was significantly higher compared to that of dogs with PVE (p < 0.05). These observations suggest that disturbances of gut microbial communities were associated with PVE in young dogs. Evaluation of the roles of these bacterial groups in the pathophysiology of PVE warrants further studies.

Influence of Temperature on the Bacterial Community in Substrate and Extracellular Enzyme Activity of Auricularia cornea

  • Zhang, Xiaoping;Zhang, Bo;Miao, Renyun;Zhou, Jie;Ye, Lei;Jia, Dinghong;Peng, Weihong;Yan, Lijuan;Zhang, Xiaoping;Tan, Wei;Li, Xiaolin
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.224-235
    • /
    • 2018
  • Temperature is an important environmental factor that can greatly influence the cultivation of Auricularia cornea. In this study, lignin peroxidase, laccase, manganese peroxidase, and cellulose in A. cornea fruiting bodies were tested under five different temperatures ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, $35^{\circ}C$, and $40^{\circ}C$) in three different culture periods (10 days, 20 days and 30 days). In addition, the V4 region of bacterial 16S rRNA genes in the substrate of A. cornea cultivated for 30 days at different temperatures were sequenced using next-generation sequencing technology to explore the structure and diversity of bacterial communities in the substrate. Temperature and culture days had a significant effect on the activities of the four enzymes, and changes in activity were not synchronized with changes in temperature and culture days. Overall, we obtained 487,694 sequences from 15 samples and assigned them to 16 bacterial phyla. Bacterial community composition and structure in the substrate changed when the temperature was above $35^{\circ}C$. The relative abundances of some bacteria were significantly affected by temperature. A total of 35 genera at five temperatures in the substrate were correlated, and 41 functional pathways were predicted in the study. Bacterial genes associated with the membrane transport pathway had the highest average abundance (16.16%), and this increased at $35^{\circ}C$ and $40^{\circ}C$. Generally, different temperatures had impacts on the physiological activity of A. cornea and the bacterial community in the substrate; therefore, the data presented herein should facilitate cultivation of A. cornea.

Effect of Exposure Concentration and Time of Fuel Additives on the Indigenous Microbial Community in Forests (산림 토착 미생물 군집에 미치는 유류 첨가제 노출 농도 및 시간의 영향)

  • Cho, Won-Sil;Cho, Kyung-Suk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.5
    • /
    • pp.387-394
    • /
    • 2008
  • The toxicity of methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA) and formaldehyde (FA) on the indigenous microbial community in forest soil was studied. MTBE, TBA and FA with different concentrations were added into microcosms containing forest soil samples. After 10 and 30 days, total viable cell number and dehydrogenase activity in the microcosms were evaluated. Bacterial communities in the microcosms were also analyzed using a denaturing gradient gel electrophoresis (DGGE). Dehydrogenase activity and total viable cell number were decreased according to the increase of MTBE, TBA and FA concentrations (P<0.05). FA toxicity was the highest, but TBA toxicity was the lowest. The results of principal component analysis using DGGE fingerprints showed that the microbial communities contaminated MTBE, TBA and FA were grouped by exposure time not exposure concentration. Dominant species in the microcosms were as follows: Photobacterium damselae sub sp. and Bacillus sp. KAR28 for MTBE; Mycobacterium sp. and Uncultured Clostridium sp. for TBA; and Uncultured Paenibacillaceae bacterium and Anxynobacillus, Flavithermus for FA.

Seasonal Changes in the Microbial Communities on Lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea

  • Woojung Lee;Min-Hee Kim;Juyeon Park;You Jin Kim;Eiseul Kim;Eun Jeong Heo;Seung Hwan Kim;Gyungcheon Kim;Hakdong Shin;Soon Han Kim;Hae-Yeong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.219-227
    • /
    • 2023
  • Lettuce is one of the most consumed vegetables worldwide. However, it has potential risks associated with pathogenic bacterial contamination because it is usually consumed raw. In this study, we investigated the changes in the bacterial community on lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea, and the prevalence of foodborne pathogens on lettuce in different seasons using 16S rRNA gene-based sequencing. Our data revealed that the Shannon diversity index showed the same tendency in term of the number of OTUs, with the index being greatest for summer samples in comparison to other seasons. Moreover, the microbial communities were significantly different between the four seasons. The relative abundance of Actinobacteriota varied according to the season. Family Micrococcaceae was most dominant in all samples except summer, and Rhizobiaceae was predominant in the microbiome of the summer sample. At the genus level, the relative abundance of Bacillus was greatest in spring samples, whereas Pseudomonas was greatest in winter samples. Potential pathogens, such as Staphylococcus and Clostridium, were detected with low relative abundance in all lettuce samples. We also performed metagenome shotgun sequencing analysis on the selected summer and winter samples, which were expected to be contaminated with foodborne pathogens, to support 16S rRNA gene-based sequencing dataset. Moreover, we could detect seasonal biomarkers and microbial association networks of microbiota on lettuce samples. Our results suggest that seasonal characteristics of lettuce microbial communities, which include diverse potential pathogens, can be used as basic data for food safety management to predict and prevent future outbreaks.

Bacterial Community Profiling during the Manufacturing Process of Traditional Soybean Paste by Pyrosequencing Method (Pyrosequencing을 이용한 전통된장 제조과정 중 세균군집구조의 분석)

  • Kim, Yong-Sang;Jeong, Do-Yeon;Hwang, Young-Tae;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.275-280
    • /
    • 2011
  • In order to evaluate the diversity and change of bacterial population during the manufacturing process of traditional soybean paste (doenjang), bacterial communities were analyzed using 16S rRNA gene-based pyrosequencing. In rice straw, the most important inoculum source for fermentation, the bacterial sequences with a relative abundance greater than 1% were assigned to four phyla, Proteobacteria (71%), Actinobacteria (20.6%), Bacteroidetes (4.2%), and Firmicutes (1.3%). Unlike bacterial community composition of rice straw, a different pattern of bacterial population in meju was observed with predominantly high abundance (99.1%) of Firmicutes. Phylum composition in young doenjang was almost same as that of meju. Major genera in young doenjang were Bacillus (81.3%), Clostridium (6.9%) and Enterococcus (6.3%) and the predominant species among bacterial population was B. amyloliquefaciens (63.6%). Abundance of the phylum Firmicutes in mature doenjang was 99.98%, which was even higher value than those in meju and young doenjang. Predominant species in mature doenjang were B. amyloliquefaciens (67.3%), B. atrophaeus (12.7%), B. methylotrophicus (6.5%), B. mojavensis (3.2%), and B. subtilis. (2.5%), which were also identified as major species of the microbial flora in meju. These results suggested that rice straw was a primary source for supplement of Bacillus species in manufacturing the traditional doenjang and that some species of Bacillus strains were mainly involved in the fermentation process of traditional doenjang.

Analysis of Bacterial Community Composition in Wastewater Treatment Bioreactors Using 16S rRNA Gene-Based Pyrosequencing (16S rRNA 유전자 기반의 Pyrosequencing을 이용한 하수처리시설 생물반응기의 세균군집구조 분석)

  • Kim, Taek-Seung;Kim, Han-Shin;Kwon, Soon-Dong;Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.352-358
    • /
    • 2010
  • Bacterial community composition in activated sludge wastewater treatment bioreactors were analyzed using 16S rRNA gene-based pyrosequencing for the four different wastewater treatment processes. Sequences within the orders Rhodocyclales, Burkholderiales, Sphingobacteriales, Myxococcales, Xanthomonadales, Acidobacteria group 4, Anaerolineales, Methylococcales, Nitrospirales, and Planctomycetales constituted 54-68% of total sequences retrieved in the activated sludge samples, which demonstrated that a few taxa constituted majority of the activated sludge bacterial community. The relative ratio of the order members was different for each treatment process, which was assumed to be affected by different operational and environmental conditions of each treatment process. In addition, activated sludge had very diverse bacterial species (Chao1 richness estimate: 1,374-2,902 operational taxonomic units), and the diversity was mainly originated from rare species. Particularly, the bacterial diversity was higher in membrane bioreactor than conventional treatment processes, and the long solids retention time of the operational strategy of the membrane bioreactor appeared to be appropriate for sustaining diverse slow growing bacteria. This study investigating bacterial communities in different activated sludge processes using a high-throughput pyrosequencing technology would be helpful for understanding microbial ecology in activated sludge and for improving wastewater treatment in the future.