• Title/Summary/Keyword: Bacterial Nitrogen

Search Result 472, Processing Time 0.025 seconds

Studies on the Production of Microbial Culture Medium by Using By-Product of Salt-Fermented Kanary (까나리 액젓 부산물의 미생물 배지화를 위한 연구)

  • Won, Hye-Jin;Hahm, Young-Tae;Kim, Hye-Kyung;Kim, Byung-Yong
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.202-206
    • /
    • 2000
  • Feasibility of microbial culture media using by-product of salt fermented kanary was investigated. Gram negative strain, Escherichia coli, and Gram positive strain, Bacillus subtilis, and bioluminescent Photobacterium Phosphoreum were incubated with kanary by-Product media (KB media). Compared with LB media, KB media had enough carbon source, but lacked nitrogen source and growth factor. When 0.5% of peptone as a nitrogen source and 0.3% of yeast extract as nitrogen and growth factor source were fortified in KB media, the cell population rate was similar to LB media. Also, when 0.5% of yeast extract was fortified to KB media, it showed the same result as in LB media. The price of KB media with fortification of 0.5% peptone and 0.3% yeast extract, and 0.5% of yeast extract is only 46 and 19% of that of LB media, respectively. These results showed that kanary by-Product could be a good and cheaper bacterial culture media if small amount of nitrogen source and growth factor were added.

  • PDF

Distribution of Vital, Environmental Components and Nutrients Migration Over Sedimentary Water Layers

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.195-206
    • /
    • 2021
  • Contaminated marine sediment is a secondary pollution source in the coastal areas, which can result in increased nutrients concentrations in the overlying water. We analyzed the nutrients release characteristics into overlying water from sediments and the interaction among benthic circulation of nitrogen, phosphorus, iron, and sulfur were investigated in a preset sediment/water column. Profiles of pH, ORP, sulfur, iron, nitrogen, phosphorus pools were determined in the sediment and three different layers of overlying water. Variety types of sulfur in the sediments plays a significant role on nutrients transfer into overlying water. Dissimilatory nitrate reduction and various sulfur species interaction are predominantly embodied by the enhancing effects of sulfide on nitrogen reduction. Contaminant sediment take on high organic matter, which is decomposed by bacteria, as a result promote bacterial sulfate reduction and generate sulfide in the sediment. The sulfur and iron interactions had also influence on phosphorus cycling and released from sediment into overlying water may ensue over the dissolution of ferric iron intercede by iron-reducing bacteria. The nutrients release rate was calculated followed by release rate equation. The results showed that the sediments released large-scale quantity of ammonium nitrogen and phosphate, which are main inner source of overlying water pollution. A mechanical migration of key nutrients such as ammonia and inorganic phosphate was depicted numerically with Fick's diffusion law, which showed a fair agreement to most of the experimental data.

Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq

  • Lu, Gui-Hua;Zhu, Yin-Ling;Kong, Ling-Ru;Cheng, Jing;Tang, Cheng-Yi;Hua, Xiao-Mei;Meng, Fan-Fan;Pang, Yan-Jun;Yang, Rong-Wu;Qi, Jin-Liang;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.561-572
    • /
    • 2017
  • The global commercial cultivation of transgenic crops, including glyphosate-tolerant soybean, has increased widely in recent decades with potential impact on the environment. The bulk of previous studies showed different results on the effects of the release of transgenic plants on the soil microbial community, especially rhizosphere bacteria. In this study, comparative analyses of the bacterial communities in the rhizosphere soils and surrounding soils were performed between the glyphosate-tolerant soybean line NZL06-698 (or simply N698), containing a glyphosate-insensitive EPSPS gene, and its control cultivar Mengdou12 (or simply MD12), by a 16S ribosomal RNA gene (16S rDNA) amplicon sequencing-based Illumina MiSeq platform. No statistically significant difference was found in the overall alpha diversity of the rhizosphere bacterial communities, although the species richness and evenness of the bacteria increased in the rhizosphere of N698 compared with that of MD12. Some influence on phylogenetic diversity of the rhizosphere bacterial communities was found between N698 and MD12 by beta diversity analysis based on weighted UniFrac distance. Furthermore, the relative abundances of part rhizosphere bacterial phyla and genera, which included some nitrogen-fixing bacteria, were significantly different between N698 and MD12. Our present results indicate some impact of the glyphosate-tolerant soybean line N698 on the phylogenetic diversity of rhizosphere bacterial communities together with a significant difference in the relative abundances of part rhizosphere bacteria at different classification levels as compared with its control cultivar MD12, when a comparative analysis of surrounding soils between N698 and MD12 was used as a systematic contrast study.

Assessment of the Bacterial Regrowth Potential in Drinking Water System Using Specific Regrowth Rate (재증식속도에 의한 상수도 시스템의 세균재증식능 평가)

  • Oh, Jung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.309-315
    • /
    • 2005
  • In this study, the bacterial regrowth characteristics in drinking water were investigated for various nutrient concentrations and forms using improved BRP method as a traditional approach and specific regrowth rate as a new index. The results of bacterial regrowth potential for glucose and $NH_4^+-N$, which was evaluated by BRP method as a traditional index, appeared to be higher relative to that of acetate or humic acids as carbon source and $NO_2^--N\;or\;NO_3^--N$ as nitrogen sources, respectively. The results obtained by specific regrowth rate as a new index were similar to that of BRP method with respect to the nutrient conditions examined in this study; i.e., the specific regrowth rate for glucose(ranged from 0.005 to $0.082\;hr^{-1}$) was feater than that acetate and humic acids(ranged from 0.005 to $0.068\;hr^{-1}$ and from 0.005 to $0.008\;hr^{-1}$, respectively). And specific regrowth rate for $NH_4^+-N$ (ranged from 0.008 to $0.072\;hr^{-1}$) was feater than that $NO_2^--N\;and\;NO_3^--N$ (ranged from 0.008 to $0.055\;hr^{-1}$ and from 0.008 to $0.059\;hr^{-1}$, respectively). Therefore, specific regrowth rate can be applied in order to evaluate the bacterial regrowth potential in drinking water.

Effects of bamboo leaf extract on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows

  • Li, Yi;Fang, Luoyun;Xue, Fuguang;Mao, Shengyong;Xiong, Benhai;Ma, Zhu;Jiang, Linshu
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1784-1793
    • /
    • 2021
  • Objective: An experiment was conducted to evaluate the effects of bamboo leaf extract (BLE) on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows. Methods: The experiment comprised a 14-day adaptation period and a 21-day experimental period and was conducted in a high-temperature and humidity environment (daily mean ambient temperature = 33.5℃±1.3℃; daily mean relative humidity = 64.9%±0.8%, daily mean temperature-humidity index = 86.2±0.4). Twelve Holstein dairy cows were randomly allocated into two groups. A total mixed ration supplemented with BLE at 0 (CON) and 1.3 g/kg dry matter (DM) were fed, respectively. Feed intake and milk yield were recorded daily. Milk samples were collected on 1, 11, and 21 d of the experimental period to analyze milk performance. Rumen fluid samples were collected on 21 d of the experimental period to analyze rumen fermentation parameters and rumen bacterial communities. Results: Compared with the control group, supplementation of BLE increased milk yield (p<0.01), milk fat yield (p = 0.04), 4% fat-corrected milk (p<0.01) and milk fat content (p<0.01); reduced somatic cell count (p<0.01). No differences in DM intake and milk protein or lactose content were observed between two groups. Supplementation of BLE also increased the rumen total volatile fatty acid (p<0.01), acetate (p<0.01), butyrate (p<0.01), and valerate (p = 0.05) concentrations. However, no significant effects were observed on rumen pH, ammonia nitrogen, propionate, acetate/propionate ratio, isobutyrate, or isovalerate. Furthermore, BLE increased the rumen bacterial abundance and the diversity of the rumen bacterial community. The BLE reduced the Firmicutes/Bacteroidetes abundance ratio and increased the abundances of Butyrivibrio_2 (p<0.01) and Ruminococcus_2 (p<0.01). Conclusion: The BLE supplementation at 1.3 g/kg DM could improve production performance and rumen fermentation in dairy cows during heat stress.

Studies on Microbial and Enzymatic Actions during the Ripening Process of Salted Alaska Pollack Tripe (창난 젓갈의 숙성 과정 중 미생물 및 자기소화효소 작용에 관한 연구)

  • Chae, Soo-Kyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.3
    • /
    • pp.340-349
    • /
    • 2011
  • This study examined the roles of autolytic enzymes and microorganisms in the ripening process of salted Alaska pollack tripe made with various concentrations of salt i.e, 7.5% and 20% by weight. Salted Alaska pollack tripe treated with antibiotic agents for the inhibition of microbial growth and a control were prepared experimentally, and changes in chemical composition and viable cell counts were investigated, individually, during the ripening process. Just after the preparation of the low salt Alaska pollack tripe made with 7.5% salt, viable bacterial cells occurred at a level of $10^5$ CFU/g. In the control, bacterial counts increased rapidly to $10^7$ CFU/g by the 14th day of ripening. However, in the sample treated with antibiotic agents, counts were decreased to a level of $10^4$ CFU/g by the 3rd day of ripening and increased gradually to $10^6$ CFU/g by the 5th day of ripening, and then the same value was maintained there-after. Just after the preparation of the high salt Alaska pollack tripe made with 20% salt, viable bacterial cells occurred at a level of $10^3$ CFU/g. In both the samples treated with antibiotic agents and the control, bacterial counts decreased rapidly to $10^0$ CFU/g by the 45th day of ripening and increased gradually there-after. The content of amino type nitrogen was 76.3 mg% just after the preparation of the low salt Alaska pollack tripe made with 7.5% salt. Amino type nitrogen content was increased to 283.5 mg% by the 5th day of proper ripening in the control, but it was increased to 208.0 mg% in the sample treated with antibiotic agents. The difference in amino type nitrogen content was 75.5 mg/100 g. The content of amino type nitrogen was 57.2 mg% just after the preparation of the high salt Alaska pollack tripe made with 20% salt. Amino type nitrogen content was increased to 198.3 mg by the 60th day of proper ripening in the control, but it was increased to 162.0 mg% in the sample treated with the antibiotic agents. The difference in amino type nitrogen content was 36.3 mg/100 g. The contents of VBN and TMA-N were 102.1 mg% and 20.5 mg%, respectively, at the 7th day of ripening in the low salt Alaska pollack tripe made with 7.5% salt. The content of VBN was 60.0 mg% and TMA-N was not detected at the 21st day of ripening in the sample treated with antibiotic agents. The control sample was spoiled by the 7th day of ripening but the sample treated with antibiotic agents was not spoiled by the 21st day of ripening. On the other hand, VBN content was 37.2 mg% and TMA-N was not detected at the 90th day of ripening in the high salt Alaska pollack tripe made with 20% salt, and the control sample was not spoiled.

Optimizing Fermentation Medium Composition for Bacterial Cellulose Production by a Newly Isolated Gluconacetobacter sp. RKY5

  • Kim, Soo-Yeon;Kim, Yong-Jun;Wee, Young-Jung;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.175-180
    • /
    • 2005
  • In this study, we investigated the optimal medium composition for bacterial cellulose (BC) production by Gluconacetobacter sp. RKY5. Among the various kinds of carbon sources, glycerol was the most efficient as a sole carbon source and its optimal concentration for BC production was 15 g/L. The optimal concentration of yeast extract as a nitrogen source for BC production was found to be 8 g/L. $K_{2}HPO_{4}$ and acetic acid were selected respectively as a phosphate source and a secondary substrate, and both optimal concentrations were 3 g/L. The amount of produced BC was 4.59 g/L in a static culture and 6.5 g/L in a shaking culture condition with 150 rpm. These values were 2.1 and 2.7 times higher than those in a static (2.16 g/L) and a shaking (2.41 g/L) cultures using HS medium generally used for BC production.

  • PDF

Improvement of Fermentation Quality of Rice Straw Silage by Application of a Bacterial Inoculant and Glucose

  • Li, Jing;Shen, Yixin;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.901-906
    • /
    • 2010
  • The improvement of the fermentation quality of rice straw silage by application of lactic acid bacteria (LAB) and glucose was investigated in this study. Sixteen rice varieties were harvested at the maturity stage and the rice straw was ensiled with LAB inoculant ($1{\times}10^5$ cfu/g of fresh weight) and glucose (2% of fresh weight). Inoculation with LAB improved the fermentation as reflected in reductions in pH, acetic acid (by 3.7 to 78.3%), butyric acid (by -6.0 to 100.0%) and ammonia nitrogen (by 1.0 to 71.7%) concentrations, and increases in lactic acid (by 43.9 to 282.9%) and crude protein concentrations compared with the control. Application of LAB plus glucose was more effective in improving fermentation quality than LAB alone. The variety of rice straw which contained relatively high levels of water soluble carbohydrates (WSC) tended to obtain better fermentation quality. The results suggested that LAB application and selection of rice varieties whose straw contained high levels of WSC were effective in improvement of the fermentation quality of rice straw silage.

Effects of Salting and Packaging on the Quality of Dombaeki (Shark Meat) during Storage (돔배기 저장중 염처리와 포장방법이 품질에 미치는 영향)

  • Lee, Hye-Lim;Park, Hyo-Jin;Lee, Shin-Ho;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.17 no.4
    • /
    • pp.444-450
    • /
    • 2010
  • We investigated the quality of Dombaeki (shark meat) treated without salting (NS), with salting (S), air-packed (A), and vacuum-packed (V), during storage at $4^{\circ}C$ and $-18^{\circ}C$. We explored water holding capacity, elasticity, total bacterial counts, pH, titratable acidity level, volatile basic nitrogen (VBN) value, and drip loss. Water holding capacity and elasticity values were better when salting and vacuum-packaging were employed than when samples were not salted and were packaged in air. The total bacterial counts in SV meat were significantly lower than in other samples. The pH of all samples increased slowly during storage, and the pH values of NSA samples were significantly higher than the pH values of other samples. The VBN level and drip loss of SV meat were the lowest of all samples during storage. The results show that salted vacuum-packed meat was of better quality than that stored without salting, and air-packed, regardless of storage temperature.

SILAGE FERMENTATION AND SILAGE ADDITIVES - Review -

  • Bolsen, K.K.;Ashbell, G.;Weinberg, Z.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.483-493
    • /
    • 1996
  • Advances in silage technology, including precision chop forage harvesters, improved silos, polyethylene sheeting, shear cutting silo unloaders, and the introduction of total mixed rations, have made silage the principal method of forage preservation. A better understanding of the biochemistry and microbiology of the four phases of the ensiling process has also led to the development of numerous silage additives. Although acids and acid salts still are used to ensile low-DM forages in wet climates, bacterial inoculants have become the most widely used silage additives in the past decade. Commercial inoculants can assure a rapid and efficient fermentation phase; however, in the future, these products also must contribute to other areas of silage management, including the inhibition of enterobacteria, clostridia, and yeasts and molds. Nonprotein nitrogen additives have the problems of handling, application, and reduced preservation efficiency, which have limited their wide spread use. Aerobic deterioration in the feedout phase continues to be a serious problem, especially in high-DM silages. The introduction of competitive strains of propionic acid-producing bacteria, which could assure aerobically stable silages, would improve most commercial additives. New technologies are needed that would allow the farmer to assess the chemical and microbial status of the silage crop on a given day and then use the appropriate additive(s).