• Title/Summary/Keyword: Bacterial Metabolites

Search Result 157, Processing Time 0.028 seconds

Draft Genome Analysis of Antimicrobial Streptomyces Isolated from Himalayan Lichen

  • Kim, Byeollee;Han, So-Ra;Lamichhane, Janardan;Park, Hyun;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1144-1154
    • /
    • 2019
  • There have been several studies regarding lichen-associated bacteria obtained from diverse environments. Our screening process identified 49 bacterial species in two lichens from the Himalayas: 17 species of Actinobacteria, 19 species of Firmicutes, and 13 species of Proteobacteria. We discovered five types of strong antimicrobial agent-producing bacteria. Although some strains exhibited weak antimicrobial activity, NP088, NP131, NP132, NP134, and NP160 exhibited strong antimicrobial activity against all multidrug-resistant strains. Polyketide synthase (PKS) fingerprinting revealed results for 69 of 148 strains; these had similar genes, such as fatty acid-related PKS, adenylation domain genes, PfaA, and PksD. Although the association between antimicrobial activity and the PKS fingerprinting results is poorly resolved, NP160 had six types of PKS fingerprinting genes, as well as strong antimicrobial activity. Therefore, we sequenced the draft genome of strain NP160, and predicted its secondary metabolism using antiSMASH version 4.2. NP160 had 46 clusters and was predicted to produce similar secondary metabolites with similarities of 5-100%. Although NP160 had 100% similarity with the alkylresorcinol biosynthetic gene cluster, our results showed low similarity with existing members of this biosynthetic gene cluster, and most have not yet been revealed. In conclusion, we expect that lichen-associated bacteria from the Himalayas can produce new secondary metabolites, and we found several secondary metabolite-related biosynthetic gene clusters to support this hypothesis.

Control of Anthracnose and Gray Mold in Pepper Plants Using Culture Extract of White-Rot Fungus and Active Compound Schizostatin

  • Dutta, Swarnalee;Woo, E-Eum;Yu, Sang-Mi;Nagendran, Rajalingam;Yun, Bong-Sik;Lee, Yong Hoon
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Fungi produce various secondary metabolites that have beneficial and harmful effects on other organisms. Those bioactive metabolites have been explored as potential medicinal and antimicrobial resources. However, the activities of the culture filtrate (CF) and metabolites of whiterot fungus (Schizophyllum commune) have been underexplored. In this study, we assayed the antimicrobial activities of CF obtained from white-rot fungus against various plant pathogens and evaluated its efficacy for controlling anthracnose and gray mold in pepper plants. The CF inhibited the mycelial growth of various fungal plant pathogens, but not of bacterial pathogens. Diluted concentrations of CF significantly suppressed the severity of anthracnose and gray mold in pepper fruits. Furthermore, the incidence of anthracnose in field conditions was reduced by treatment with a 12.5% dilution of CF. The active compound responsible for the antifungal and disease control activity was identified and verified as schizostatin. Our results indicate that the CF of white-rot fungus can be used as an eco-friendly natural product against fungal plant pathogens. Moreover, the compound, schizostatin could be used as a biochemical resource or precursor for development as a pesticide. To the best of our knowledge, this is the first report on the control of plant diseases using CF and active compound from white-rot fungus. We discussed the controversial antagonistic activity of schizostatin and believe that the CF of white-rot fungus or its active compound, schizostatin, could be used as a biochemical pesticide against fungal diseases such as anthracnose and gray mold in many vegetables.

Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota

  • Zhang, Xiaoyan;Chen, Sha;Duan, Feipeng;Liu, An;Li, Shaojing;Zhong, Wen;Sheng, Wei;Chen, Jun;Xu, Jiang;Xiao, Shuiming
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.334-343
    • /
    • 2021
  • Background: Gut microbiota mainly function in the biotransformation of primary ginsenosides into bioactive metabolites. Herein, we investigated the effects of three prebiotic fibers by targeting gut microbiota on the metabolism of ginsenoside Rb1 in vivo. Methods: Sprague Dawley rats were administered with ginsenoside Rb1 after a two-week prebiotic intervention of fructooligosaccharide, galactooligosaccharide, and fibersol-2, respectively. Pharmacokinetic analysis of ginsenoside Rb1 and its metabolites was performed, whilst the microbial composition and metabolic function of gut microbiota were examined by 16S rRNA gene amplicon and metagenomic shotgun sequencing. Results: The results showed that peak plasma concentration and area under concentration time curve of ginsenoside Rb1 and its intermediate metabolites, ginsenoside Rd, F2, and compound K (CK), in the prebiotic intervention groups were increased at various degrees compared with those in the control group. Gut microbiota dramatically responded to the prebiotic treatment at both taxonomical and functional levels. The abundance of Prevotella, which possesses potential function to hydrolyze ginsenoside Rb1 into CK, was significantly elevated in the three prebiotic groups (P < 0.05). The gut metagenomic analysis also revealed the functional gene enrichment for terpenoid/polyketide metabolism, glycolysis, gluconeogenesis, propanoate metabolism, etc. Conclusion: These findings imply that prebiotics may selectively promote the proliferation of certain bacterial stains with glycoside hydrolysis capacity, thereby, subsequently improving the biotransformation and bioavailability of primary ginsenosides in vivo.

Secondary Metabolites from Anthonotha cladantha (Harms) J.Léonard

  • Laurent Voufack Lefack Bongmo;Achille Nouga Bissoue;Samuel Magloire Bissim;Georges Bellier Tabekoueng;Willifred Dongmo Tekapi Tsopgni;Mehreen Lateef;Felicien Mushagalusa Kasali;Muhammad Shaiq Ali;Alain Francois Kamdem Waffo;Jean Duplex Wansi
    • Natural Product Sciences
    • /
    • v.29 no.1
    • /
    • pp.50-58
    • /
    • 2023
  • The phytochemical investigation of the crude methanolic extracts roots and stem bark of Anthonotha cladantha (Harms) J.Léonard led to the isolation and identification of twelve secondary metabolites: 2,3-dihydroxypropyl hexacosanoate (1), hederagenine (2), cycloeucalenol (3), 2α-hydroxylupeol (4), betulinic acid (5), lupeol (6), heptacosan-2-one (7), triacontanoic acid (8), stigmast-4-en-3-one (9), β-sitosterol (10), stigmasterol (11), and stigmasterol-3-O-β-D-glucopyranoside (12). Their structures were elucidated with the help of their spectroscopic and physical data and by comparison with those reported in the literature. To the best of our knowledge, from all those compounds, 2,3-dihydroxypropyl hexacosanoate (1), hederagenine (2), cycloeucalenol (3), 2α-hydroxylupeol (4), and betulinic acid (5) are being reported for the first time from this genus. In addition, the acetylation of compound 1 afforded a new derivative 3-(hexacosanoyloxy)propane-1,2-diyl diacetate (1a). Compound 1 possessed a moderate α-glucosidase inhibitory activity with an IC50 value of 39.2 ± 0.22 μM; it neither showed antioxidant activity nor inhibition against the enzyme urease. Compound 1a exhibited weak antioxidant activity in the DPPH assay with an IC50 value of 80.3 ± 0.83 μM but was inactive against α-glucosidase and urease. Furthermore, both compounds 1 and 1a were inactive against seven pathogenic bacterial strains.

Dihydroceramide was Highly Elevated by the Fumonisin B1 and Desipramine in Sphingomonas chungbukensis

  • Burenjargal, Munkhtsatsral;Lee, Youn-Sun;Yoo, Jae-Myung;Choi, Mi-Hwa;Ji, So-Young;Lee, Yong-Moon;Kim, Young-Chang;Oh, Sei-Kwan;Yun, Yeo-Pyo;Yoo, Hwan-Soo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.100-105
    • /
    • 2008
  • The sphingolipid metabolites act as lipid mediator for cell proliferation and apoptosis in mammalian cells. In bacteria, sphingolipid metabolism remains unknown. The purpose of this study was to investigate whether sphingolipid metabolism is potential target for fumonisin $B_1$($FB_1$) and desipramine in Sphingomonas chungbukensis, Gram-negative bacteria, by comparing the intracellular contents of bacterial sphingolipids with ones of HIT-T15 ${\beta}$-cells, hamster pancreatic cells. The concentrations of ceramide and dihydroceramide were 18.0 ${\pm}$ 12.0 and 0.025 ${\pm}$ 0.018 nmol/mg protein, respectively, in HIT-T15 cells. However, the concentrations of ceramide and dihydroceramide in the bacterial culture were 2.0 ${\pm}$ 1.2 and 10.6 ${\pm}$ 5.5 nmol/mg protein, respectively. $FB_1$ decreased the level of ceramide from 18.0 to 3.8 nmol/mg protein in HIT-T15 ${\beta}$-cells. However, dihydroceramide content in $FB_1$-treated HIT-T15 cells was slightly decreased compared with the control culture. When S. chungbukensis was treated with either $FB_1$ or desipramine, dihydroceramide level was increased by 5- and 4-fold, respectively, compared with the control bacteria. These results indicate that $FB_1$ and desipramine may act as an activator in bacterial sphingolipid biosynthetic pathway, and bacterial sphingolipid metabolism pathway appears to be different from the pathway of mammalian cells.

Bacterial determinants involved in the induction of systemic resistance ana plant growth promotion in tobacco by Pseudomonas chlororaphis O6.

  • Han, Song-Hee;Cho, Baik-Ho;Kim, Young-Cheol
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.101.2-102
    • /
    • 2003
  • The ability of P. chlororaphis O6 to induce resistance to Erwinia carotovora subsp. carotovara SCCI and to promote growth in tobacco was demonstrated in microtiter assays on plants pre-inoculated at the root level with the bacteria before challenge with the leaf pathogen. To identify th bacterial determinants involved in induced systemic resistance and plant growth promotion, cell culture of O6 grown in King's medium B was fractionated with organic solvents and purified using various columns. in vivo and in vitro assays with samples from successive fractionation steps of the O6 supernatant led to the conclusion that antibacterial compounds were observed in aqueous layer, and to the isolation of fractions containing metabolites that retained most of the resistance-inducing activity (70:30, methanol:water) and the plant growth promotion (80:20 and 90:10, methanol:water) after ODS column chromatography. Although these molecules remain to be purified further and structurally characterized, its isolation is an addition to the range of determinants from plant growth-promoting rhizobacteria known to stimulate plant defence.

  • PDF

Identification of an antagonistic bacteria and its antibiotic substance against Colletotrichm orbiculare causing anthracnose on cucumber

  • Chae, Hee-Jung;Moon, Surk-Sik;Ahn, Jong-Woong;Chung, Young-Ryun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.102.1-102
    • /
    • 2003
  • A bacterial strain YC4963 with antifungal activity against Colletotrichum orbiculare, a causal organism of cucumber anthracnose was isolated from the rhizosphere soil of Siegesbeckia pubescens (Siegesbeckia pubescens Makino;Family:Compositae) in Korea. Based on physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bacterial strain was identified as Pseudomonu aureofaciens. The bacteria also inhibited mycelial growth of several plant fungal pathogens such as Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani on PDA and 0.1 TSA media. The antibiotic activity was found from the culture filtrate of TSB(tryptic soy broth) and its active compounds were quantitatively bound to XAD adsorber resin. The antibiotic spectrum was broad and growth of C. orbiculare and F. oxysporum, B. cinerea were inhibited at very low concentration. The chemical data from various chromatographic procedures showed that active fraction consisted of at least two phenazine derivatives. However, the metabolites had no inhibitory effect on Pythium ultimum which was reported to be sensitive to phenazine antibiotics. The compounds responsible for the activity are now under investigation.

  • PDF

Proinflammatory Effects of Bacterial Lipopolysaccharide (LPS) in Rainbow Trout (Oncorhynchus mykiss) Macrophage Cells

  • Hong Suhee;Jeong Hyun Do
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.130-134
    • /
    • 2003
  • Proinflammatory effects of bacterial lipopolysaccharide (LPS) have been assessed by analysing the induction of two inflammatory genes, $interleukin-1\beta$ $(IL-1\beta)$ and cyclooxygenase-2 (COX-2), in rainbow trout (Oncorhynchus mykiss) macrophage cells. Production of a metabolite of arachidonic acid by COX-2, prostaglandin $E_2\;(PGE_2)$, was also analysed in macrophage cells after LPS stimulation. Northern blot analysis revealed that LPS $(5{\mu}g/mL)$ significantly upregulated $IL-1\beta$ (54 times) and COX-2 (40.7 times) gene expression in macrophage cells after 4 h stimulation. According to RT-PCR (Reverse Transcription Polymerase Chain Reaction) analysis, $IL-1\beta$ gene induction in LPS stimulated macrophage cells was started within 1h and significantly increased thereafter until 4h. Meanwhile, COX-2 gene induction by LPS was delayed in comparison with $IL-1\beta$ gene induction as a faint band was observed after 4h stimulation in head kidney macrophage cells. LPS also significantly increased $PGE_2$ production in head kidney leucocytes, presumably via activating COX-2 expression that metabolites arachidonic acid to $PGE_2$. In conclusion, it was demonstrated that LPS could induce two main inflammatory and immune related genes, $IL-1\beta$ and COX-2, and increase $PGE_2$ production in trout head kidney macrophage cells, representing a strong inflammatory activity.

Panosialins, Inhibitors of Enoyl-ACP Reductase from Streptomyces sp. AN1761

  • Kwon, Yun Ju;Sohn, Mi-Jin;Oh, Taegwon;Cho, Sang-Nae;Kim, Chang-Jin;Kim, Won-Gon
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.184-188
    • /
    • 2013
  • In the continued search for inhibitors of enoyl-acyl carrier protein (ACP) reductase, we found that four acylbenzenediol sulfate metabolites from Streptomyces sp. AN1761 potently inhibited bacterial enoyl-ACP reductases of Staphylococcus aureus, Streptococcus pneumoniae, and Mycobacterium tuberculosis. Their structures were identified as panosialins A, B, wA, and wB by MS and NMR data. They showed stronger inhibition against S. aureus FabI and S. pneumoniae FabK with $IC_{50}$ of 3-5 ${\mu}M$ than M. tuberculosis InhA with $IC_{50}$ of 9-12 ${\mu}M$. They also exhibited a stronger antibacterial spectrum on S. aureus and S. pneumoniae than M. tuberculosis. In addition, the higher inhibitory activity of panosialin wB than panosialin B on fatty acid biosynthesis was consistent with that on bacterial growth, suggesting that they could exert their antibacterial activity by inhibiting fatty acid synthesis.

Diversity and Characterization of Endophytic Bacteria Associated with Tidal Flat Plants and their Antagonistic Effects on Oomycetous Plant Pathogens

  • Bibi, Fehmida;Yasir, Muhammad;Song, Geun-Cheol;Lee, Sang-Yeol;Chung, Young-Ryun
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.20-31
    • /
    • 2012
  • Endophytic bacterial communities of tidal flat plants antagonistic to oomycete plant pathogens were studied by the isolation of 256 root colonizing endophytic bacteria from surface-disinfected root tissues of six plants ($Rosa$ $rugosa$, $Suaeda$ $maritima$, $Vitex$ $rotundifolia$, $Carex$ $scabrifolia$, $Glehnia$ $littoralis$ and $Elymus$ $mollis$) growing in a tidal flat area of Namhae Island, Korea. To understand the antagonistic potential, an $in$ $vitro$ antagonistic assay was performed to characterize and identify strains that were antagonistic to the oomycete plant pathogens $Phytophthora$ $capsici$ and $Pythium$ $ultimum$ from the total population. Nine percent of the total number of isolated bacteria exhibited in vitro inhibitory activity against target plant pathogenic oomycetes. Taxonomic and phylogenetic placement of the antagonistic bacteria was investigated by analysis of the 16S rRNA gene sequences. The sequence analysis classified the antagonistic strains into four major classes of the domain bacteria ($Firmicutes$, ${\alpha}-Proteobacteria$, ${\gamma}-Proteobacteria$ and $Actinomycetes$) and 10 different genera. Further production of secondary metabolites, hydrolytic enzymes and plant growth promoting traits were determined for the putative new species of antagonistic endophytic bacteria. These new strains could not be identified as known species of ${\alpha}-Proteobacteria$, and so may represent novel bacterial taxa. The unexpected high antagonistic bacterial diversity associated with the tidal flat plants may be indicative of their importance in tidal flat plants as a promising source of novel antimicrobial compounds and biocontrol agents.